Section 5
BENTON HARBOR BASIC
~And

EXTENDED BENTON HARBOR
- BASIC -

5-2 l SECTION FIVE = P——
TABLE OF CONTENTS
INTRODUCTION
Manual SCOPE ..ot e 5-6
Hardware Requirements oottt 5-6
Loading and Running BASIC................oooiiiiiiiii ... 5-7
Benton Harbor BASIC and Extended Benton Harbor BASIC 5-7
Command Completiono 5-7
HEATH/WINTEK BASIC ARITHMETIC
Data TyPES v oot vttt e e 5-9
Variables e 5-11
Subcripted Variables, P 5-12
Expressions..............cooiiiiii, e e e 5-14
Arithmetic Operationsoiuuirtirnn e 5-14
Relational Operators...........ooviiiiiiiiii i, 5-18
Boolean Operatorsc.oviiitiinriinn e '5-19
_ STRING MANIPULATION
‘ String Variables i 5-21
String Operators ...t 5-22
THE COMMAND MODE *{U
Using The Command Mode For Statement Execution 5-23
BASIC STATEMENTS it 5-25
Line NUIDEIS ...ttt i et 5-25
Statement TYPesovrniiiiiii i 5-25
Command Mode Statementsccciiiiiiiiniiiiiinn.. 5-27
Statements Valid In the Command or Program Mode 5-33
Program Mode Statementsc.ccoiiiiiiiiiiiiiiiiee 5-58
PREDEFINED FUNCTIONS
INtrodUCtiON ..ottt 5-61
Arithmetic and Special Feature Functions........................ 5-61
STRING Functions (Extended BASIConly) 5-68
EDITING COMMANDS
Control-C, CNTRL-Cttt i 5-71
Inputting Control 5-71
Outputting Controlt 5-72
Command Completionoovviiiiiiiiiiiiniiiii . 5-72
Enforced Lexical Rulesooviiiiiiiiiiiii i 5-73

General Text Rules

ow

BENTON HARBOR BASIC

ERRORS
EITOr Message .. .ovvi ittt et e e 5-75
Recovering from EITorsttt 5-75
BASICERROR TABLEot it et e et 5-77
APPENDIX A
Loading From the Software Distribution Tape 5-81
Loading From a Configured Tape............c.covvvriieeeennnnn... 5-82

APPENDIX B ‘
Numeric Data . ..o e e e 5-83

Boolean Dataiiit e 5-83
String Data (Extended BasicOnly) 5-83
Variables ... e 5-83
Subscripted Variables 5-84
ATithmetic OPEratorsvoirereee et e 5-84
Relational Operators...........ccooviiiiiiiiiiiiii i, 5-84
Boolean Operatorsooviiiiiiiiiine i, 5-85
String Variablesoo i 5-85
String Operatorscouiiiiii i e 5-85
Line NUIMDETS\t e 5-85
The Command Mode ...t 5-85
Multiple Statements on One Line..............c.covvvvvinnnnnnn.. 5-85
Command Mode Statementscciiiiiiiiiiiiinn.. 5-86
Command and Program Mode Statements 5-87
Program Mode Statements i 5-90
Predefined Functions 5-91
Editing Commandsuiiiiieeirtiii e 5-93
APPENDIX C
BASIC Utility Routinescoiiiiiiiiiiiiiiiiiiiennnn, 5-95
APPENDIX D
Entry Points to Utility Routinescooivunn. 5-107
APPENDIX E
An Example of USR, e 5-111
INDEX .. S 5-113

5-3

5-4 lSECTION FIVE

L

= A FI . ATETEIT®

BENTON HARBOR BASIC | 5-5

TAB GUIDE

ERRORS . ottt R
BASIC ERROR TABLE
APPENDIX A S T PRI PP AT
APPENDIX B ..o, TR PSR

APPENDIX C o ivtttt et e e e e e e e P .

CAPPENDIX D ..o B PP

APPENDIXE B SRR B

5-6

SECTION FIVE

A T ATEIICTIT®

INTRODUCTION

BENTON HARBOR BASIC is a conversational programming language which is
an adaptation of Dartmouth BASIC+. (BASIC is an acronym for Beginners’ All
Purpose Symbolic Instruction Code.) It uses simple English statements and
familiar algebraic equations to perform an operation or a series of operations to
solve a problem. BENTON HARBOR BASIC is an interpretive language, compact
enough to run in a Heath H8 computer with minimal memory, yet powerful
enough to satisfy most problem-solving requirements. The interpretive structure
of BASIC affords excellent facilities for the detection and correction of prog-
ramming errors. It uses advanced techniques to perform intricate manipulations
and to express problems more efficiently. '

Two versions of BENTON HARBOR BASIC are available. Extended BENTON
HARBOR BASIC (EX. B.H. BASIC) with strings provides character string manip-
ulation and advanced functions. BENTON HARBOR BASIC (B.H. BASIC) does
not have strings and some advanced functions, and so uses less memory. The
user may operate B.H. BASIC in an H8 computer with 8K of memory.

Manual Scope

This Manual is written for the user who is already familiar with the language
BASIC. It also describes the extended implementation of Dartmouth BASIC and,
in so doing, provides a brief summary of the language. However, this manual is
not intended as an instruction Manual for the language BASIC. If you are not
familiar with BASIC, we suggest that you obtain the Heathkit Continuing Educa-
tion course entitled “Basic Programming,”” Model EC-1100, before attempting to
use this Manual.

Hardware Requirements

Extended BENTON HARBOR BASIC (with strings) runs on an H8 computer with
a minimum of 12K bytes of random access memory. BENTON HARBOR BASIC
(without strings) runs on an H8 with a minimum of 8K memory. Both versions
require a console terminal, its appropriate interface card, and a mass storage
device such as a cassette or paper tape reader/punch.

Both BASICs automatically measure the maximum amount of unbroken memory
above the starting point at 8K (40,100 offset octal). They use all available memory
unless the high memory limit is configured otherwise during the system config-
uration procedure (see ‘“‘Product Installation” on Page 0-19 in the “Introduction”
to this Software Reference Manual).

*BASIC is a registered trademark of the Trustees of Dartmouth College.

o~

O

I—IEATHKITG ‘ BENTON HARBOR BASIC

Benton Harbor BASIC and Extended Benton Harbor
BASIC '

This Manual covers both BENTON HARBOR BASIC (B.H. BASIC) and Extended
BENTON HARBOR BASIC (EX. B.H. BASIC). Information that applies only to
Extended BASIC is printed in a different type face, as shown below. For example:

Strings are only used in EX. B.H. BASIC, except in PRINT statements.

Anything not marked in this different type face applies to BASIC. References to
“BASIC” apply to both BENTON HARBOR BASIC and to Extended BENTON
HARBOR BASIC. BASIC is summarized in “Appendix B.”

Loading and Running BASIC

BASIC is distributed in binary load format on cassette tapes or paper tape. It is
loaded in accordance with the software configuration guide, outlined in “Pro-
duct Installation” on Page 0-19. A condensed version of this loading procedure
is given in “Appendix A” of this Manual. Once a system BASIC tape is confi-
gured, you can load the configured tape, using the internal PAM-8 loader, and
start it by pressing the GO key. EX. B.H. BASIC and B.H. BASIC use the asterisk
(*) as a prompt character.

Command Completion

Both the B.H. BASIC and EX. B.H. BASIC employ command completion. BASIC
examines each character as you type it on the console keyboard, and when
sufficient information is received to uniquely identify one particular command,
BASIC finishes typing the command for you. For example, once the letters PR
have been typed, the command PRINT is uniquely defined. Therefore, BASIC
supplies letters INT and the required blank following the T.

BASIC also watches your spelling. As commands are being typed, letter
combinations leading to non-existant commands are not accepted and the con-

sole terminal bell is rung.

5-7

5-8 ISECTION FIVE

=g r I ATEKITS

BASIC ARITHMETIC

Data Types

BASIC supports three different data types:

1. Numeric data.
" 2. Boolean data.
3. String data.

NUMERIC DATA

BASIC accepts real and integer numbers. A real number contains a decimal
point. BASIC assumes a decimal point after integer data. Any number can be
used in mathematical expression without regard to its type. Real numbers must
be in the approximate range of 10~ to 10*%". Integer numbers must lie in the
range of 0 to 65535. All numbers used in BASIC are internally represented in
floating point, which allows approximately 6.9 digits of accuracy. Numbers may
be either negative or positive.

In addition to integer and real numbers, BASIC recognizes a third format. This
format, called exponential notation, expresses a number as a decimal number
raised to a power of 10. The exponential form is

XXE(x)NN

where E represents the algebraic statement “times ten to the power of,” XX
represents up to a six digit integer or real number, and NN represents an integer
from 0 to 38. Thus, the number is read as “XX times 10 to the = power of NN.”

Numeric data in all three forms may be used in the immediate mode, program
mode in data statements, or in response to READ and INPUT statements.

Unless otherwise specified, all the numbers including exponents are presumed
to be positive. ‘

BENTON HARBOR BAsic | 5-9

5-10 | secTion FIVE

The results of BASIC computations are printed as decimal numbers if they lie in
therange of 0.1 to 999999%. If the results do not fall in this range, the exponential
format is used. BASIC automatically suppresses all leading and trailing zeros in
real and integer numbers. When the output is in exponential format, it is in the
form '

(+£) X.XXXXXE (%) NN

The following are examples of typical inputs and the corresponding output.
Note the dropping of leading and trailing zeros, truncation to six places of
accuracy, conversion to exponential notation when necessary, and conversion to
decimal notation where permitted.

INPUT NUMBER OUTPUT NUMBER COMMENTS

0.1 1 (leading zero dropped)
.0079 7 .90000E-03 (<.1 converts to exponential)
0022 22 (leading zeros dropped)
22.0200 22.02 (trailing zeros dropped)
999999 999999 (format maintained)
1000000 1.00000E+06 (converted to exponential)
100000007 1.00000E+08 (truncated to 6 places)
-10.1E+2 -1010 (converted to decimal format)

BOOLEAN VALUES

Boolean values are a subclass of numeric values. Values representing the posi-
tive integers from 0-65,535 (2'¢~!) may be used as Boolean data. When using
numeric data as Boolean values, the numeric data represents the equivalent
16-bit binary numbers. Fractional parts of numeric data used with Boolean
operators are discarded. If the numeric value with the fractional part does not fall
into the range of 0-65,535, an illegal number error is generated.

STRING DATA (Extended BASIC Only)

Extended BASIC handles data in a character string format. Data elements of this type are
made up of a string of ASCII characters up to 255 characters in length. Extended BASIC
provides operators and functions to manipulate string data. String values in either pro-
grammed text or data must always be enclosed by quotation marks (“). Any printable ASCII
character (with the exception of the quotation mark itself) may appear in an Extended
BASIC string. In addition to the printable ASCII characters, the line feed and bell characters
are also permitted. A string may not be typed on more than one line. A carriage return is
rejected as an illegal string character.

+«NOTE: This may be changed in EX. B.H. BASIC. See “CNTRL 1,” Page 5-35.

=i aTErrTS ' BENTON HARBOR BASIC { 5-11

Variables

A BASIC variable is an algebraic symbol representing a number. Variable nam-
ing adheres to the Dartmouth specification. That is, variable names consist of one
alphabetic character which may be followed by one digit (zero to nine). The
following is a list of acceptable and unacceptable variables, and the reason why
the variable is unacceptable.

ACCEPTABLE UNACCEPTABLE REASON FOR
VARIABLES VARIABLES UNACCEPTABILITY
C 2C A digit cannot begin a variable.

A5 AF A second character in a variable
' must be a number (0-9).

D 3 A single number is not an acceptable
variable.
L2 $2 The first character of a variable must

be a letter (A-Z).

Subscripted variables, string variables, and subscripted string variables are permitted.
See “Subscripted Variables,” Page 5-12, and ““String Manipulation” on Page 5-21.

A value is assigned to a variable when you indicate the value in a LET, READ, or
INPUT statement. These operations are discussed in “LET” (Page 5-46),
“PRINT” (5-50), and “INPUT AND LINE INPUT” (Page 5-59).

The value assigned to a variable changes each time a statement equates the
variable to a new value. The RUN command sets all variables to zero (0).
Therefore, it is only necessary to assign an exact value to a variable when an
initial value other than zero is required.

5-12

SECTION FIVE

C% HEATHEKIT®

Subscripted Variables

In addition to the variables described above, BASIC permits subscripted vari-

“ables. Subscripted variables are of the form:

where A is the variable letter, n is a number (optional) 0-9, and N, thru Ng are the
integer dimensions of the variable. Subscripted variables provide you with the
ability to manipulate lists, tables, matrices, or any set of variables. Variables are
allowed one to eight subscripts.

The use of subscripts pel:mits you to create multi-dimensional arrays of numeric
and string variables. It is important to note that a dimensioned variable is
distinguished from a scaler value of the same name. For example, all four of the
following are distinct variables:

A, A(N), A$», AB(N)=*

When you are referencing a subscripted variable, each element in the subscript
list may consist of an arbitrarily complex expression so long as it evaluates to a
numeric value within the allowable range for the indicated dimension. Thus, the
subscripted variable A(5,5), would be dimensioned as:

A(2,3) is legal

x =
X = A(242, VAL("4.0")) is legal as it is equivalent to A(4,4)
x =

A(2,"4.0") is not legal as (“4.0” is a string)

«NOTE: The $ indicates a string variable valid only in EX. B.H. BASIC. See Section 3.

BENTON HARBOR BASIC 5-18
= @I EATHKITS :

——

The following are graphic illustrations of simple subscripted variables. In these
particular examples, a simple variable (A) is followed by one or two integer
expressions in parentheses. For example,

A(T)

where I may assume the values of 0 to 5, allows reference to each of the six
elements A(0), A(1), A(2), A(3), A(4), and A(5). A graphic representation of this
6-element, single-dimension array is shown below. Each box represents a mem-
ory location reserved for the value of the variable of the indicated name. Often,
the entire array is referred to as A(.

A(0)

A1)

A(2)

A(3)

A(4)

A(5)

NOTE: Subscripted variables begin at zero. Therefore, the previous example 0 to
5 defines six elements.

A two dimensional array B(L, J) allows you to refer to each of the 20 elements

B(0,0), B(0,1), B(0,2), . .., B(0,]),, B(L)).
This is graphically illustrated as follows, for B(3,4).
o e
]
(B(0,0) B(0,1) B(0,2) B(0,3) B(0,4)
B(1,0) ‘B(1,1) | B2 B(1,3) B(1,4)
I
W B(2,0) B(2,1) B(2,2) B(2,3) B(2.4)
L B(3,0) B(3,1) B(3,2) B(3,3) B(3,4)

NOTE: A variable cannot be dimensioned twice in the same program. /n EX. B.H.
BASIC, a clear may be used to destroy an array, allowing you to reuse it.

5-14.

SECTION FIVE

G FI S ATEIKIT®

BASIC does not presume any dimension. Therefore, the DIMension (DIM) state-
ment must be used to define the maximum number of elements in any array. It is
described in “DIM (DIMENSION)”’ on Page 5-36.

Expressions

An expression is a group of symbols to be evaluated by BASIC. Expressions are
composed of numeric data, Boolean data, string data, variables, or functions. In
an expression, these are alone or combined by arithmetic, relational, or Boolean
operators.

The following examples show some expressions BASIC recognizes.

ARITHMETIC BOOLEAN STRING
EXPRESSIONS EXPRESSIONS EXPRESSIONS DESCRIPTION

1.02 255 “YES” Data
1.02+ 16 255 OR 003 “YES” + “NO” Combined
A<B “YES” < “NQ” Relational

A major feature of BASIC is its extensive use of expressions in situations when
many other BASICs only permit variables or numbers. This feature permits you
to perform very sophisticated operations within a particular command or func-
tion. It is important to note that not all expressions can be used in all statements.
The explanations describing the individual statements detail any limitations.

Arithmetic Operators

BASIC performs exponentiation (in EX. B.H. BASIC only), multiplication, division,
addition, and subtraction. BASIC also supports two unary operators (— and
NOT). The asterisk (*) is used to signify multiplication and the slash (/)isused
to indicate division. Exponentiation is indicated by the up arrow (t)..

THE PRIORITY OF ARITHMETIC OPERATIONS

When multiple operations are to be performed in a single expression, an order of
priority is observed. The following list shows the arithmetic operators in order of

descending precedence. Operators appearing on the same line are of equal
precedence.

—(Unary) (negation)
t (exponentiation)
*» / (multiplication division)

+ - (addition subtraction)

BENTON HARBOR BASIC

= J FTE ATEIEITS

Parentheses are used to change the precedence of any arithmetic operations, as
they are in common algebra. Parentheses receive top priority. Any expression
within parentheses is evaluated before an expression without parentheses. The
innermost leftmost parenthetical expression has the greatest priority.

UNARY OPERATORS

BASIC supports two unary operators: — and NOT. These operators arereferred to
as unary because they require only one operand. For example:

A
C

-2
NOT D

The unary operator (—) performs arithmetic negation. The NOT operator per-
forms Boolean negation. See Page 5-19.

EXPONENTIATION (EXTENDED BASIC ONLY)

Exponentiation (1) is used to raise numeric or variable data to a power. For example:
A = B2 s equivalentto A = B * B.

NOTE: The operand must not be negative. The exponent may be negative. A negative
operand generates a syntax error. For greatest efficiency, B2 should be written as B* B
and B+3 should be written as B * B * B. All other powers should use the *.

MULTIPLICATION AND DIVISION

BASIC uses the asterisk (*) and the slash (/) as symbols to perform the algebraic
operations of multiplication and division respectively. Both multiplication and
division require numeric data as operands.

The following examples use the multiplication and division operators:

*PRINT 2%6
12

*PRINT 6/3
2

PRINT 6/3%2
4

NOTE: This last expression evaluates to4, not 1; as * and / have equal precedence
and therefore the leftmost operator is evaluated first.

5-15

5-16 | SecTION FIVE

= FIE ATEIICITS

ADDITION AND SUBTRACTION

The plus sign (+) and the minus sign (—) perform arithmetic addition and
subtraction. In addition, the plus operator (+) performs string concatenation if both
operands are string data. Concatenation is restricted to Extended BASIC. The following
examples use the plus and minus operators:

*PRINT 3

3

*PRINT 3+5

8

*PRINT 10-3

7

*PRINT
HEATH H8

*

SUMMARY

In any given expression, BASIC performs arithmetic operations in the following:

order:

1. Parentheses have top priority. Any expression in parentheses is -

IIHEATH" + "n n + "Hgll}

extended BASIC only

evaluated prior to a nonparenthetical expression.
2. Without parentheses, the order of priority is:

a.
b.
C.

d.

Unary minus and NOT (equal priority).

Exponentiation (proceeds from left to right).

Multiplication and division (equal priority, proceeds from left to
right).

Addition and subtraction (equal priority, proceeds from left to
right).

3. Iftherulesineither 1 or 2 donot clearly designate the order of priority,
the evaluation of expression proceeds from left to right.

The following examples illustrate these principles. The expression 21342 is
evaluated from left to right: ‘

1. 213 = 8 (left-most exponentiation has highest priority).
2. 812 = 64 (answer).

BENTON HARBOR BASIC | 5-17
-c—_‘% HEATEXIT®]

The expression 12/6*4 is evaluated from left to right since multiplication and
division are of equal priority:

1. 12/6 = 2 (division is the left-most operator).
2. 2*4 = 8 (answer).

The expression 6+4*342 evaluates as:

1. 312 = 9 (exponentiation has highest priority).
2. 9*4 = 36 (multiplication has second priority).
3. 36+6 = 42 (addition has lowest priority; answer).

Parentheses may be nested, (enclosed by additional sets of parentheses). The
expression in the innermost set of parentheses is evaluated first. The next
innermost left justified is second, and so on, until all parenthetical expressions
are evaluated. For example:

6 *((213+4)/3)

Evaluates as:

243 = 8 (exponentiation in parentheses has highest priority).

8+4 = 12 (addition in parentheses has next highest priority).

12/3 = 4 (next innermost parentheses are evaluated).

4*6 = 24 (multiplication outside of parentheses is lowest priority).

AW N o=

Parentheses prevent confusion or doubt when you are evaluating the expression.
For example, the two expressions

D*Et2/4+E/C*A12
((D*(E42))/4)+((E/C)*(At2))

are executed identically. However, the second is much easier to understand.

Blanks should be used in a similar manner, as BASIC ignores blanks (except
when they are part of a string enclosed in quotation marks). The two statements: .

10 LET B =3 * 2 + 1
10 LET B=3*2+1

are identical. The blanks in the first statement make it easier to read.

5-18 | secTion FIVE

Relational Operators | |)

Relational operators compare two variables or expressions. They are generally
used with an IF THEN statement. The result of a comparison by the relational
operators is either a true or a false. A false is represented by zero, and true is
represented by 65535 (2%6-1). NOTE: These values are chosen so when they are
used as Boolean values, false is all zeros and true is all ones.

The following table lists relational operators as used in BASIC.

ALGEBRATIC BASIC

SYMBOL SYMBOL EXAMPLE MEANING
= = A=B A is equal to B.
< < A<B A is less than B.
< <= A <=B A is less than or equal to B.
> > A>B A is greater than B.
> >= A> =B A is greater than or equal to B.
F <> A< >B A is not equal to B.

The symbols =<, =>, >< are not accepted and BASIC generates a syntax error
if they are used. U

The following examples show the results of using relational operators.

*PRINT 3<4 (true)

65535
*PRINT 4<3 (false)
0

EX. B.H. BASIC and B.H. BASIC differ from most other versions in the use of the
relational operator. When you are using BASIC, you may use the relational
operators in any expression. When the expression is evaluated, the appropriate
numeric answer (0 or 65535) will be used as the answer to that expression.

-~

= g rIEATEIITS

Boolean Operators
'OR

The operator OR performs a Boolean OR on the two integer operands. The integer
operands (which must lie in the range of 0 to 65535) are converted to 16-bit
binary numbers. The Boolean (logical) 16-bit OR is applied and the result is
returned to the equivalent integer representation. NOTE: As the Boolean value
chosen to represent true (65535) and false (0), the OR operator implements a
standard truth table OR function. For example:

*PRINT 132 OR 255 00000000 10000100 132
255 00000000 11111111 255
00000000 11111111 255

and

*PRINT (3>2) OR (4>9)
65535

AND

The AND operator performs a Boolean (logical) AND on the two integer

operands. These integer operands must lie in the range of 0 to 65535. The integer

operands are converted into 16-bit binary numbers and the logical AND is
performed. The result is returned to the equivalent integer representation.
NOTE: The AND operator implements a standard AND truth table on the values
true (65535) AND false (0). For example:

*PRINT 132 AND 255 00000000 10000100 132

132 00000000 11111111 255
* 00000000 10000100 132
and

*PRINT (3>2) AND (9>7)
65535

NOT

The NOT operator Boolean negation. That is, the numeric value of the variable is
converted into a 16-bit Boolean data value; each bit is inverted, and the 16-bit

binary number is restored to numeric data. For example:

*PRINT NOT O 0 = 00000000 00000000 and
65535 65535 = 11111111 11111111

*

BENTON HARBOR BAsSIC | 5-19

e

5-20 | SECTION.FIVE

BENTON HARBOR BASIC | 5-21
HEATHKIT®

STRING MANIPULATION

Extended BENTON HARBOR BASIC is capable of manipulating string information. A string
is a sequence of characters treated as a single unit of an expression. It can be composed of
alphanumeric and other printing characters. An alphanumeric string contains letters,
numbers, blanks, or any combination of these characters. A character string may not
exceed 255 characters. The blank, bell, and line feed are considered to be printing
characters.

String Variables

The dollar sign ($) following a variable name indicates a string variable. For example:

B§
and
L6$
are string variables. A string variable (B$) is used in the following example.
*B$ = "HI": PRINT B$
HI

NOTE: The string variable B$ is separate and distinct from the variable B.

Any array name followed by the $ character notes that the dimensioned variable is a string.
" For example:

L$(n) A2%(n) (single-dimensioned string variables).
D$(m,n) H1$(m,n) (multiple-dimensioned string variables).

The numbers‘ in parentheses indicate the location within the array. See “Subscripted
Variables,” Page 5-12.

The same variable can be used as a numeric variable and as a string variable in one
program. For example, each of the following is a different variable:

B B(n)
B$ B$§(m,n)

The following are illegal, as they are double declarations of the same variable.
A$(n) A$(n,m)

String arrays are defined with a dimension (DIM) statement in the same way numerical
‘arrays are defined.

5-22

SECTION FIVE

e T E ATEIIIT®

String Operators

Extended BASIC provides you with the ability to manipulate strings. The string manipulation

operators are: plus (+), for concatenation, and the relational operators.

CONCATENATION

Concatenation connects one string to another without any intervening characters. This is
specified by using the plus (+) symbol and only works with strings. The maximum range of
a concatenated string is 255 characters. For example:

*PRINT "THE HEATH" + " H8 COMPUTER"
THE HEATH H8 COMPUTER

RELATIONAL OPERATORS FOR STRINGS

Relational operators, when applied to strings, indicate alphabetic sequence. The relational
comparison is done on the basics of the ASCII value associated with each character, on a
character-by-character basis, using the ASCII collating sequence. A null character (indi-
cating that the string is exhausted) is considered to head the collating sequence. For
example:

*PRINT "ABC" < "DEF"

65536 - (The relation shown is true)
*PRINT "ABC">"ABCD" .
0 (The relation is false. “ABC" is less than “ABCD.”)

NOTE: In any string comparison, trailing blanks are not ignored. For example:

*PRINT "CDE" = "CDE "
0 (The equality is false.)

The following table indicates how relational operators are used with string variables in
Extended BASIC.

OPERATOR EXAMPLE MEANING

A$ = B$ String A$ and B$ are alphabetically equal.

< A$ < B$ String A$ is alphabetically less than B$.

> A$ > B$ String A$ is alphabetically greater than BS.
<= A% < = B$ String A$ is equal to or less than B$.
> = A$ > = B$ String A$ is equal to or greater than B$.
<> A$ <> B$ String A$ and B$ are not alphabetically equal.

BENTON HARBOR BASIC

g HEATHKITS

THE COMMAND MODE

Using The Command Mode For Statement Execution

You may solve a problem in BASIC by using a complete program or by use of the
command mode. Command mode makes BASIC an extremely powerful cal-
culator.

Lines of program material entered for later execution are identified by line
numbers. BASIC identifies those lines entered for immediate execution by the
absence of the line number. That is to say, statements that begin with line
numbers are stored, and statements without line numbers are executed im-
mediately when a carriage return is received. For example=:

10 PRINT "THIS IS AN H8 COMPUTER"

is not executed when it is entered at the console terminal. However, the state-
ment:

*PRINT "THIS IS THE HEATH H8 COMPUTER"
when the RETURN key is typed, is immediately executed as:
THIS IS THE HEATH H8 COMPUTER

The command mode of operation is useful in program de-bugging and perform-
ing simple calculations which do not justify the writing of a complete program.

For example, in order to facilitate program de-bugging, you may place STOP
statements liberally throughout a program. Once BASIC encounters a STOP
statement, the program halts. You can examine and change data values using the
command mode. The statement

CONTINUE

isused to continue execution of the program. You can also use the GOSUB and IF
commands. Values assigned to variables remain intact using this technique. A

. SCRATCH, CLEAR, or another RUN command resets these values.

*NOTE: Strings may be used in B.H. BASIC PRINT statement. However, these strings cannot be manipulated in
B.H. BASIC.

5-23

5-24 l SECTION FIVE . ,
[y simATEKIT®

The ability to place multiple statements on a single line is an advantage in the u
command mode. For example:

*B = 2:PRINT B:PRINT B + 1
2

3

*

Program loops are allowed in the command mode. For example, a table of
squares can be produced as follows:

*FOR A = 1 TO 10:PRINT A,A * A:NEXT A
1
4
9
16
25
36
49
64
81
0 100

P OO0 uh NN

Some statements cannot be used in the command mode. The INPUT statement, .
for example, is not available in the command mode, and its useresults in the USE w
error message. There are certain command functions in the command mode

which make no sense when used in the command mode. Statements available in

the command mode are covered in “Command Mode Statements’’ on Page 5-27

and ‘“‘Statements Valid in the Command or Program Mode” on Page 5-33.

- BENTON HARBOR BASICl 5-25
g LB ATEIKITS 7

- BASIC STATEMENTS

A program is composed of one or more lines or “statements” instructing BASIC
to solve a problem. Each program line begins with a line number identifying the
line and its statement. The line number indicates the desired order of statement
execution. Each statement starts with an English word specifying the operation
to be performed. Single statements are terminated with the return key. Multiple
statements are separated by a colon (:) with the last statement terminated by a
return (a non-printing character). A DATA statement cannot share a line with
other statements. (See Page 5-54.)

Line Numbers

An integer number begins each line in a BASIC program. BASIC executes the
program statements in numerical sequence, regardless of the input order. State-
ment numbers must lie in the range of 1 to 65,535. It is good programming
practice tonumber lines in increments of 5 or 10 to allow insertion of forgotten or
additional statements when de-bugging the program.

The length of a BASIC statement must not exceed one line. There is no method to
. continue a statement to a following line. However, multiple statements may be
_/ writtenona single line. In this situation each statement is separated by a colon.
For example:

10 PRINT "VALUES",A,A+1 is a single line print statement, whereas
10 LET A=12: PRINT A,A+1,A+2 isaline containing two statements, LET and PRINT.

Virtually all statements can be used anywhere in a multiple statement line. There
are, however, a few exceptions. They are noted in the discussion of each state-
ment. NOTE: Only the first statement on a line can have a line number. Program
control cannot be transferred to a statement within a line, but only to the
beginning of a line.

Statement Types

BENTON HARBOR BASIC supports three different types of statements. First,
there are statements valid only in the command mode. These statements are used
for loading programs, erasing memory, and other such functions directing-
BASIC’s activities. Second, there are statements valid as both commands or
within a program. Third, there are statements valid only within a program. These
statements may not be used in the command mode. Most statements fall into the
second category. This means they can appear within a program or be typed
Q directly in the command mode and immediately executed.

5-26 lSECTION FIVE

= g IE ATEIRITS

As noted earlier, some statements valid in both modes may not be meaningful in
both modes.

BASIC is designed to allow maximum versatility in its structure. Thus, almost
everywhere that BASIC requires a number or a string, BASIC allows a numeric or
a string expression. For example, you can construct a computed GOTO by
simply computing a value for a variable, X. The statement

GOTO X

then redirects the program to the computed line number.

The following three sections are organized as command mode statements, com-
mand and program mode statements, and program mode statements. They can
be found, respectively in: “Command Mode Statements” (below), “Statements
Valid in the Command or Program Mode” (Page 5-33), and ‘‘Program Only
Statements” (Page 5-58).

To simplify some practical descriptions in these sections and those following,
the notation below is used to describe allowed expressions:

1. “iexp” indicates an integer expression, an expression lying in the
range of 0 to 65535. The fractional part of any integer expression is
discarded when the integer is formed. :

2. “nexp’” indicates a numeric expression. This may be an integer, deci-
mal, or exponential expression with up to 6 decimal places.

3. “sexp” indicates a string expression. String expressions are limited to a
maximum of 255 printing ASCII characters. String expressions are limited to
Extended BASIC.

4. “sep” indicates a separator. Separators such as the comma and the
semi-colon are used to delineate certain portions of BASIC statements.

5. “[]” brackets indicate optional portions of a statement, depending on
the exact function desired.

6. ‘“var” indicates a variable. This may be a numeric or string variable,
depending upon the example.

7. “name” indicates a string used to identify a date, a program, or a
language record.

BAsiC | 5-27
B ysi=aTEITS BENTON HARBOR | 5-2

N Command Mode Statements

The command mode statements cannot be used within a program. For example,
the RUN statement cannot be used within a program to make it self-starting. Any
attempt to incorporate one of these statements within a program generates a USE
erTor message.

BUILD

This statement is used to insert or replace many program lines. The form of the BUILD
statement is:

BUILD iexpl, iexp?

When BUILD is executed, the initial line number iexp 1 is displayed on the terminal. Any text
entered after the new line number is displayed becomes the new line, replacing any
pre-existing line. Once the line is completed by a carriage return, the next line number is
displayed. NOTE: If a null entry is given (a carriage return typed directly after the line
number is displayed), the line whose number is displayed is eliminated if it existed.

BUILD is illustrated in the following example. CONTROL-C terminates BUILD.

Kh—) *BUILD 100,10

100 PRINT "LINE 100"

110 PRINT "LINE 110"

120 PRINT "LINE 120" _

130 < CNTRL-C > (Control-C typed here)

*LIST ’

100 PRINT "LINE 100"

110 PRINT "LINE 110"

120 PRINT "LINE 120"

*

CONTINUE

CONTINUE begins or resumes the execution of a BASIC program. CONTINUE
has the unique feature of not affecting any existing variable values, nor does it
affect the GOSUB or FOR stack CONTINUE is normally used to resume execution
after an error the program or after a CONTROL-C stops the program. CONTINUE
may be used to enter a program or a specific line (in conjunction with a GOTO).
CONTINUE is unlike RUN, which resets all variables, stacks, etc.. The form of the
CONTINUE statement is:

CONTINUE

5-28

SECTION FIVE

A ITE ATETEIT®

-

In the following example, CONTINUE starts the program at a specific line w
number.

*GOTO 100
*CONTINUE (start execution at line 100)

'CONTINUE is also useful for entering a program with a variable or variables set

at particular values. For example:

= 23.5 (Program continues execution at Line 230
*GOTO 230 with variable A set to the value 23.5,
*CONTINUE regardless of previous program effects on A.)

DELETE

The DELETE statement is used to remove several lines from the BASIC source program.
The form of the DELETE statement is:

DELETE iexpil, iexp2?,

The lines between and including iexp1 and iexp2 are deleted.

A syntax error is flagged if “iexp1” is greater than “iexp2.” Normally, DELETE is used to —.
eliminate a number of lines of text. The SCRATCH command is used to eliminate all text. A w
RETURN typed directly after a line number eliminates that line. This technique is used to
eliminate a single line.

DUMP

The DUMP statement saves the current program text on the mass storage media '
connected to the load/dump port. This is usually paper tape or cassette. The
current program is saved; however, no variables are saved. The specific program
name is written with the data so the user may reload the program by the specified
name. The form of the DUMP statement is:

*DUMP '"name"

Make the tape drive ready before entering the DUMP statement. BASIC starts the
drive, writes the data, and stops the drive. The CONTROL-C can be used to abort
the DUMP while in progress. However, if a DUMP is aborted, an incomplete file
exists on the tape.

C

HARBOR BAsIC | 5-29
HEA.’I‘I—IKIT9 BENTON HARBO |

- \)
w The string “name’” may be up to 80 ASCII characters. The normal string ASCII
characters are permitted. An example of a DUMP is:

*DUMP "STARTREK VER 1.0 03/11/77"

This statement dumps the program Startrek version 1.0 dated the 11th of March
1977.

LOAD

The LOAD statement discards the current program in memory. A specified
program is loaded from the mass storage device connected to the load/dump
port. The form of the LOAD statement is:

LOAD '"name"

The string “name” may consist of up to 80 ASCII characters. The normal string
ASCII characters are permitted. BASIC scans the mass storage device until it
finds a program whose name matches the specified string. Before destroying the
stored information, the user is asked “SURE?.” A “Y” reply causes LOAD to
proceed. Any other response cancels LOAD. e

LJ NOTE: If the name on the mass storage device is longer than the specified name, a
match on the supplied characters in the string “name’ is valid. Thus, a program
may be dumped with extra information entered in the name such as program
version number and data. The program can then be loaded without it. For
example:

*DUMP "STARTREK VER 1.0 03/11/77"
This program, Startrek version 1.0 dated 11 March 1977, may be loaded by

*LOAD "STARTREK"
SURE? Y

A match is found between the first eight characters of the DUMP string “STAR-
TREK” and the eight characters of the load command “STARTREK.” If a null is
used as the load string, the next program on the tape is loaded. Therefore, the
statement

*LOAD nn

loads the next BASIC program appearing on the mass storage.

A

5-30

SECTION FIVE

= g IEATEIKITS

Mass storage media should be made ready before LOAD is executed. BASIC
starts and stops the mass storage device. CONTROL-C may be used to abort the
load part way through. Use a SCRATCH command to clear the results of an
aborted load.

During a load, either one of the following two error messages may be generated:

SEQ ERR and
CHKSUM ERR.

A sequence error (SEQ ERR) is generated if the file records are not in sequence.
For example, if two consecutive label records are read an error is generated, as a
BASIC file consists of a label file followed by a data file. The form of the sequence
error is

SEQ ERR

Type ablank after the SEQ ERR message. This will clear the error. The entire file
must be reread.

A checksum error (CHKSUM ERR) is generated if the computed CRC for the
record in question does not match the CRC included in the record. The form of

the checksum error message is
1

CHKSUM ERR IGNORE?

A'Y in response to the question ‘“‘ignore” aborts the error message and the next
consecutive record is read. Do not ignore the checksum error unless there is no
other way torecover the data. If a checksum erroris flagged, the chances are very
good that the data in the designated record is faulty. If you attempt to use such
bad data, it may cause BASIC to crash.

RUN
A prepared program may be executed using the RUN statement. The program is

executed starting at the lowest numbered statement. All variables and stacks are
cleared (set to zero) before program execution starts.

The form of the RUN statement is:

*RUN

BENTON HARBOR BASIC

HEATHKIT®

After program completion, BASIC prompts the user with an asterisk (*) in the left
margin, indicating that it is ready for additional command statements. If, the
program should contain errors, an error message is printed that indicates the
error and the line number containing the error, and program execution is termi-
nated. Again, a prompt is given. The program must now be edited to correct the
error and rerun. This process is continued until the program runs properly
without producing any error messages. See “‘Errors”’ (Page 5-75) for a discussion
of error messages.

Occasionally a program contains an error that causes it to enter an unending
loop. In this case, the program never terminates. The user may regain control of
the program by typing CONTROL-C (CNTRL-C). This aborts the program and
returns control to the user. Storage is not altered in this process. CONTINUE
resumes program execution. RUN clears the storage and restarts program execu-
tion.

SCRATCH

SCRATCH clears all current storage areas used by BASIC. This deletes any
commands, programs, data, strings, or symbols currently stored by BASIC.

SCRATCH should be used for entering a new program from the terminal _
keyboard to ensure that old program lines are not mixed with new program lines.
It also assures a clear symbol table. The form of the SCRATCH statement is:

*SCRATCH

Before destroying stored information, the user is asked “SURE?”’ A “Y” reply
causes SCRATCH to proceed. Any other response cancels SCRATCH. For exam-
ple:

*SCRATCH (Scratch statement entered.)
SURE? Y (Are you sure, answer Y (YES,)
* (BASIC is ready for a new entry.)
VERIFY

The VERIFY statement permits you to check a file placed on mass storage
without affecting the current program. The VERIFY command responds by
indicating the name of the file found, and if the file is correct. A form of the
VERIFY command is:

*VERIFY '"name"

5-32 l SECTION FIVE

g H I ATIIKIT®

The string “name’ can be the name of the record the user desires to verify or it
may be a null (""); in which case, BASIC verifies the first record encountered.

For example,

*VERIFY "STARTREK"
FOUND STARTREK VER 1.0 03/11/77
FILE OK

*

In the above example, the file containing the Startrek dump is verified. Note, that
the name of the file is printed immediately as soon as the label record is
encountered. The FILE OK message is printed after the data record is read and
verified. VERIFY performs a checksum on the contents of all data in the file.
Using the VERIFY command does not destroy any program data in memory.

During a VERIFY, one of two error messages may be generated. They are:

SEQ ERR and
CHKSUM ERR.

A sequence error (SEQ ERR) is generated if the file records are not in sequence.
For example, if two consecutive label records are read an error is generated, as a
BASIC file consists of a label file followed by a data file. The form of the sequence
error is

SEQ ERR .

Type ablank after the SEQ ERR message. This will clear the error. The entire file
must be reread.

A checksum error (CHKSUM ERR) is generated if the computed CRC for the
record in question does not match the checksum included in the record. The
form of the CRC error message is

CHECKSUM ERR — IGNORE?

AY inresponse to the question ignore aborts the error message and the record is
considered valid. Do not ignore the checksum error unless there is no other way
to recover the data. If a checksum error is flagged, the chances are very good that
the data in the designated record is faulty.

The command VERIFY is not available if BASIC is patched to use an ASR console
terminal as the load dump device. See “Product Installation’” on Page 0-19 of the
“Introduction” to this Software Reference Manual.

= I ATHIKITS

BENTON HARBOR BASIC

Statements Valid in the Command or Program Mode

The statements in this section may be used in either the command or the program
mode. A few of them have only subtle uses in one mode or the other. Because
they may be used in both modes, they are listed in this section.

CLEAR

CLEAR sets the contents of all variables, arrays, string buffers, and stacks to zero.
The program itself is not affected. The command is generally used before a
program is rerun to insure a fresh start if the program is started with a command
other than RUN. The form of the CLEAR statement is:

*10 CLEAR (BASIC)
10 CLEAR varname (EXTENDED BASIC)

All variables, arrays, string buffers, etc., are cleared before program is executed
by RUN. Therefore, a clear statement is not required. However, a program
terminated prior to execution (by a STOP command or an error) does not set these
variables, etc., to zero. They are left with the last value assigned. If the variable
name (varname) is specified, the CLEAR command clears the named variable, array, or
DEF FN (user defined function).

Note that the memory space used by string variables and arrays is not freed when CLEAR
varname is used. String values should be set to null (for example, A $ = ““) before clearing
so the string space can be recovered.

For example:

CLEAR A Clears variable A
CLEAR A$ Clears the string variable A$
CLEAR A(Clears the dimensioned variable A(

If a section of the program is to be rerun after appropriate editing, the variables,
arrays, dimensions, etc., should be reinitialized. You can accomplish this by
using the CLEAR statement in the command mode.

5-33

5-34 | SecCTION FIVE

CNTRL (CONTROL) (U

CONTROL is a multi-purpose command used to set various options and flags. The form of
the CONTROL statement is:

CNTRL iexpl, iexp2
The various CNTRL options are:

iexpl iexp?

CNTRL 0, nnn

CNTRL 1, n

CNTRL 2, n

CNTRL 3, n

CNTRL 4, n
CNTRL O

The CNTRL 0, nnn command sets up a GOSUB routine to process CONTROL-B charac-
ters. The line number of the routine is specified as “iexp2.” When a CONTROL-B is entered
from the terminal program, control is passed to the specified statement (beginning at the
line iexp2) via a GOSUB linkage, after the statement being executed is completed. For
example: (-

10 CNTRL 0,500

20 FOR A=1 TO 9

30 PRINT A,A*A,A*A*A

40 NEXT A

50 END.

500 PRINT "THAT TICKLES"
510 RETURN

*RUN
1 1

2
3 9 27 (CONTROL-B typed)

N
W =

THAT TICKLES
4 16 64 (CONTROL-B typed)

THAT TICKLES

5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

3

END AT LINE 50 Y

C

= I EATIIKITS

BENTON HARBOR BASIC

During the execution of the program containing these three statements, a CONTROL-B
from the keyboard momentarily interrupts the regular execution of the program. The
program completes the line in progress and then enters the subroutine at line 500 printing
the string

THAT TICKLES

It then moves to the next statement, a RETURN. This causes the program to continue with
normal program execution. NOTE: The CNTRL 0, nnn must be executed before it is
operational.

CNTRL 1

The CNTRL 1, n command sets the number of digits permitted before the exponential
notation is used.Normal mode M = 6. For example:

CNTRL 1,2 (Numbers = 100 are to be in exponential format.)

*PRINT 101
1.01000E+02

CNTRL 2

The CNTRL 2, n command controls the H8 front panel LED display mode. The control
functions are:

CNTRL 2,0 Turn display off (Normal mode).

CNTRL 2,1 Turn display on without update. (For writing into a display. See the example
under “The SEG Function, SEG (NARG)” on Page 5-65.")

CNTRL 2,2 Turn display on with update (to monitor a register or memory location).

CNTRL 3

The CNTRL 3, n command controls the size of a print zone. This is normally 14. However,
CNTRL 3, n can change the number of spaces in a print zone.

*

*CNTRL 3,5
*PRINT 1,2,3,4,3,2,1,0
1 2 3 2 3 4 3 2 1 0

5-35

5-36

SECTION FIVE

HEATI—IKITG‘

CNTRL 4

The CNTRL 4,n command turns the hardware clock on and off. CNTRL 4,0 turns the clock
off and CNTRL 4,1 turns it on. Once the clock has xeen turned off, clock dependent
functions such as PAUSE iexp, and PAD(cannot be used. Turning the clock off increases
execution speed approximately 11%.

NOTE: The CNTRL 1 through CNTRL 4 commands permanently reconfigure loaded
BASIC. Anew program does not clear them to the original state. You can reset them to their
original state by using the appropriate form of the Control statement inthe Command mode.

DIM (DIMENSION)

The DIMENSION statement explicitly defines the maximum dimensions of array

variables. A single dimension array is often called a vector. The form of the
DIMENSION statement is:

*DIM varname (iexpl[,, iexpn]) [,varname2 (.. ..)]
The expressions “iexp1” through “iexpn’ are integer expressions specifying the
bounds of each dimension. Dimensions are 0 to “expn.” So, for example, the
statement:

DIM A(5,5)

reserves an array 6x6 or 36 values. If the dimensioned variable is numeric, the
values are preset to zero. If the dimensioned variable is a string, all the values are
preset to a null string.

You may declare several variables in one DIMENSION statement by separating
them with commas. For example:

*DIM A6(3,2), B(5,5), C3(10,10)

dimensions the following arrays

VARIABLE SIZE
A6 4 by 3 12 elements
B 6 by 6 30 elements
C3 11 by 11 121 elements

e

O

HEATEKIT®

BENTON HARBOR BASIC

You can place a DIMENSION statement anywhere in a multiple statement line
and it can appear anywhere in the program. However, an array can only be
dimensioned once in a program unless it is cleared. DIMENSION statements
must be executed before the first reference to the array, although good program-
ming practices place all DIMENSION statements in a group among the first
statements of a program. This allows them to be easily identified and changed if
alterations are required later. The following example demonstrates the use of the
DIMENSION statement with subscripted variables and a two-level FOR state-
ment.

*LIST

10 REM DIMENSION DEMO PROGRAM
20 DIM A(5,10)

30 FOR B=0 TO 5

40 LET A(B,0)=B

50 FOR C=0 TO 10

60 LET A(O,C)=C

70 PRINT A(B,C);

80 NEXT C:PRINT :NEXT B

90 END
*RUN

0 1 2 3 4 5 6 7 8 9 10
1 000 0 0O0O0TO 0UO0 O
2 00 00 0DO0ODO0OG 0T 0O
3 00 00 O0O0O0GO0TO 0O
4 0 0OOD0DOODO OO OO
5 0 00 0O 000D OO0 O

END AT LINE ©0 ’

FOR AND NEXT

FOR and NEXT statements define the beginning and end of a program loop. A
program loop is a set of repeated instructions. Each time they are repeated they
modify a variable in some way until a predetermined condition is reached,
causing the program to exit from the loop. The FOR NEXT statement is of the
form:

FOR var = nexpl to nexp2 [STEP nexp3]
NEXT VAR

5-38

SECTION FIVE

A FTE ATEIICTI o

When BASIC encounters the FOR statement, the ex
nexp3 (if present) are evaluated. The variable ““var” may be a scaler numeric

variable, or it ma i i i
v ' y be an element of a numeric array. It is assigned a value of
nexpl.” For example:

pressions nexp1, nexp2 and

* *FOR A=2 TO 20 STEP 2:PRINT A;:NEXT A
2 4 6 8 10 12 14 16 18 20

causes the program to execute as long as A is less than or equal to 20. Each time
the program passes through the loop, the variable A is incremented by 2 (the
STEP number). Therefore, this loop is executed a total of 10 times. When
incremented to 22, program control passes to the line following the associated
NEXT statement. It is important to note that the initial value used for the variable
is the value assigned to the variable expression when it entered the FOR-NEXT

loop. For example:

*A=10:FOR A=2 TO 20 STEP 2:PRINT A;:NEXT A
2 4 6 8 10 12 14 16 18 20

*

Prior to execution, the variable A is assigned the value 10. The program passes
through the loop 10 times. A is reset to 2 and then increments from 2 to 20.

If “nexp2” = 0, and the initial value of var = “nexp2,” the loop terminates. For

example, the program:

*LIST
10 FOR J=2 TO 18 STEP 4
20 J=18
30 PRINT J;:NEXT J
40 END

*RUN
18
END AT LINE 40

*

i first pass,
is only executed once, since the value of] = 18 is reached on the P

satisfying the termination condition.

= s ATHEITS BENTON HARBOR BASIC | 5-39

A loop created by the statement:

*FOR A=20 TO 2 STEP 2:PRINT A;:NEXT A
20

*

is executed only once, as the initial value exceeds the terminal value. However, if
this example is modified to read:

*FOR A=20 TO 2 STEP —2:PRINT A;:NEXT A
20 18 16 14 12 10 8 6 4 2

*
the negative step allows normal operation.

In summary, for positive STEP values, the loop is executed until the variable
(var) is greater than the final assigned value (nexp2). For negative STEP values,
the loop is executed until the variable (var) is less than the final assigned value
(nexp2).

If theloop does not terminate, execution is transferred to the statement following
the FOR statement. Therefore, a series of statements may be executed using the
incremented value of the variable. If the loop does terminate, execution is
transferred to the statement following NEXT.

The expressions in the FOR statement can be any acceptable BASIC numeric
expressions.

If the STEP expression and the word STEP are omitted from the FOR statement, a
step of +1 is the default value. Since +1 is an extremely common step value, the
STEP portion of the statement is frequently omitted. For example:

*FOR A=2 TO 10:PRINT A;:NEXT A
2 3 4 5 6 7 8 9 10

*

5-40 | secTiON FIVE = rrmaTsRITe

Nesting is a technique frequently used in programming. It consists of placing
one or more loops completely inside another loop. The field or operating range of
the loop (the lines from the FOR statement to the corresponding NEXT state-
ment) must not cross the field of another loop. The following two examples show
legal and illegal nesting of FOR NEXT loops.

LEGAL NESTING ILLEGAL NESTING

Two-Level Nesting

LOOP A — FORA=1TO50 LOOPA —FORA =1TO 100
FIELD ~__ FIELD
- FORB = 1 TO 10 FORB = 1 TO 10
LooPB___ L
FIELD L NEXT B NEXT A
~FORC=1TO20 LOOPB l
FIELD NEXT B

LOOP V L. NEXT C

FIELD
L NEXT A
Three-Level Nesting
LOOPA ——FORA=1TO10 LOOPA ——FORA=1TO3
FIELD FIELD —
— FOR B = 1 TO 10
— FORB=1TO5
n LOOP B
LOOP B_~ FOR C = 1 TO 30 FIELD rFORC=1TO5
FIELD [
LOOP C__+-T L NEXT C LOOP C | WLNEXTC
FIELD™ | FIELD ~ |
FORD = 1 TO 40 -FORD = 1 TO 30
LoOPD | L
y NEXT D FIELD — | | LNEXT D
LOOP V
FIELD L NEXT B NEXT A
—— NEXT A L NEXT B

Note that both columns of nesting illustrations are shown in two-level and
three-level forms. However, right-hand columns are not truly nesting but a
crossover of FOR and NEXT loops (fields), and therefore are illegal. Also note
that each of these examples uses the implied STEP value of 1.

= g IEATHEKIT?

BENTON HARBOR BASIC

The depth of nesting depends upon the amount'of memory space available in Extended
BASIC. BASIC limits FOR loops to 5 levels. Exceeding 5 levels generates an
overflow error.

It is possible to exit from a FOR NEXT loop without reaching the variable
termination value. This can be done using a conditional transfer such as an IF
statement within the loop. However, control can only be transferred into a loop if
the loop is left during prior program execution without being completed. This
ensures the assignment of values to the termination and step variables.

Both FOR and NEXT statements can appear anywhere on a multiple statement
line. '

The NEXT statement does not require the variable. If the variable is not given,
BASIC will NEXT the innermost FOR loop.

FREE (EXTENDED BASIC ONLY)

The FREE statement displays the amount of memory used by EX. B.H. BASIC and any
program material. It also displays the total amount of free space left, which is dependant on
the amount of memory in the computer and the program size. This command is particularly
valuable when you are gauging the size of the program’s data structure and establishing
limits on a DIMENSION command. The FREE command also indicates the cause of
memory overflow errors. The form of the FREE statement is:

*FREE

The form of the printout is:

TEXT = nnnn (Bytes used by program text.)

SYMB = nnnn (Bytes used by variables and arrays.)

FORL = nnnn (Bytes used by FOR loops.)

GSUB = nnnn (Bytes used by GOSUBs.)

STRN = nnnn (Bytes used by STRING.)

WORK = nnnn (Bytes used by expression and function evaluation.)

FREE = nnnn (Total number of free bytes.)

5-41

5-42

SECTION FIVE

e J FI AT EIETIT

For example, running the program
*10 GOSUB 10

BASIC soon returns a memory overflow error. Executing FREE shows the user a very large
GOSUB table. This, and the statement provided in the error message, enables one to
determine the program is in a GOSUB loop.

*FREE
TEXT =
SYMB
FORL
GSUB
WORK
STRN =
FREE = 7248

*10GOSUB 10

*RUN

Il

I
O0OO0OO0OD WO

! ERROR — MEM OVR AT LINE 10

*FREE

TEXT = 9
SYMB = 0
FORL = O
GSUB = 7232
WORK = O
STRN = O
FREE = 16

GOSUB AND RETURN

A subroutine is a section of program performing some operation required one or
more times during program execution. Complicated operations on a volume of
data, mathematical evaluations too complex for user defined functions, or a
previously written routine are all examples of processes best performed by a
subroutine.

More than one subroutine is allowed in a single program. Good programming
practices dictate that subroutines should be placed one after another at the end of
the program in line number sequence. A useful practice is to assign distinctive
line number groups to subroutines.

For example, a main program uses line numbers through 300. The 400 block is
assigned to subroutine #1 and the 500 block is assigned to subroutine #2. Thus,
any errors, program modifications, etc., involving the subroutine are easily
identified.

w

BENTON HARBOR BASIC

= Qg FIEATEKITS

Subroutines are normally placed at the end of a program, but before data state-
ments if there are any.

Program execution begins and continues until a GOSUB statement is encoun-
tered. The form of the GOSUB statement is:

*GOSUB iexp

where iexp is the first line in the subroutine. Once GOSUB is executed, program
control transfers to the first line of the subroutine and the subroutine is executed.
For example:

60 GOSUB 500

in this example, control (the sequence of program execution) is transferred to
line 500 in the program after line 60 is executed. The first line in the subroutine
may often be a remark to identify the subroutine, or it may be any executable
statement. '

Once program control is transferred to a subroutine, program execution con-
tinues in the normal line-by-line manner until a RETURN statement is encoun-
tered. The RETURN statement is of the form:

RETURN
RETURN causes the program control to return to the statement following the

original GOSUB statement. A subroutine must always be terminated by a RE-
TURN.

“Before BASIC transfers control to a subroutine, the next sequential statement to

be processed after the GOSUB statement is internally recorded. The RETURN
statement draws on this stored information to restart normal program execution.
Using this technique, BASIC always knows where to transfer control, no matter
how many times subroutines are called. '

Subroutines can be nested in the same manner that FOR NEXT statements can be
nested. That is, one subroutine can call another subroutine, and if necessary, that
subroutine may call a third subroutine, etc. If, during execution of the subroutine
a RETURN is encountered, control is returned to the line following the GOSUB
calling the subroutine. Therefore, a subroutine can call another subroutine, even
itself. Subroutines can be entered at any point and can have more than one
RETURN. Multiple RETURN statements are often necessary when a subroutine
contains conditional statements imbedded in it, which cause different sub-
routine completions dependent on the program data.

5-43

5-44

SECTION FIVE

g F IS ATEKIT®

It is possible to transfer to the beginning or to any part of the subroutine. Multiple
entry points and returns make the GOSUB statement an extremely versatile tool.

Up to 10 levels of GOSUB nesting are permitted in BASIC. Extended BASIC permits
unlimited GOSUB nesting. However, nesting uses memory and excessive nesting depth
will cause an overflow.

GOTO

The GOTO statement provides unconditional transfer of program execution to
another line in the program. The GOTO statement is of the form:

*GOTO iexp

When this statement is executed, program control transfers to the line number
specified by the integer expression “iexp.” For example:

10 LET A=1
20 GOTO 40
30 LET A=2
40 PRINT A
50 END
*RUN

1

END AT LINE 50

*

Program lines in this example are executed in the following order:
10, 20, 40, 50
Line 30 is never executed because the GOTO statement in line 20 uncondition-

ally transfers control to line 40. After the unconditional transfer takes place,
normal sequential execution resumes at line 40. '

L

= g iEATEIRKITS

BENTON HARBOR BAsiC | 5-45

IF THEN (IF GOTO)

The IF THEN (IF GOTO) conditionally transfers program execution from the
normal consecutive order of program lines, depending on the results of a relation
test. The forms of the IF statement are:

THEN
IF expression iexp or

GOTO
IF expression THEN statement

The expression frequently consists of two variables combined by the relational
operators described in “Relational Operators” (Page 5-18). In the first form, if the
result of the expression is true, control passes to the specified line number (iexp).
In the second form, control passes to the statement following THEN on the
remainder of the line. If the result of the expression is false, control passes to the
next line or to a statement separated from the IF THEN statement by a colon (:).
The following examples show use of the IF THEN statement.

10 READ A

20 B=10

30 IF A=B THEN 50

40 PRINT "A< >B",A:END
50 PRINT "A=B",A

60 DATA 10,5,20

70 END
*RUN
A=B 10

END AT LINE 70
*CONTINUE
A< >B 5

END AT LINE 40
*CONTINUE
A< >B

END AT LINE 40
*

NOTE: The expression can be an arbitrarily complex expression. For example:

IF (A<3) AND NOT (B>C) THEN

5-46

SECTION FIVE

LET

The LET statement assigns a value to a specific variable. The form of the LET
statement is:

LET var = nexp, or
LET var$ = sexp

The variable “var” may be a numeric variable or a string variable “var$.” The
expression may be either an arithmetic “nexp” or a string expression “sexp” (Ex-
tended BASIC). However, all items in a statement must be either numeric or string,
they cannot be mixed. If they are mixed, a type conflict error is flagged. NOTE:
Unlike standard BASIC, multiple assignments are not permitted. For example,

LET A=B=3

causes A to be set to 65,535 (true) if B is equal to 3, or it causes A to be set to 0
(false) if B is not equal to 3. It does not cause both A and B to be set to 3.

You may omit the key word LET if you prefer. For example, the following two
statements produce identical results.

10 LETA = 6
AND
10 A =6

The LET statement is often referred to as an assignment statement. In this
context, the meaning of the equal (=) symbol should be understood as it is used
in BASIC. In ordinary algebra, the formula Y = Y + 1 is meaningless. However,
in BASIC the equal sign denotes replacement rather than equality. Thus, the
formulaY = Y + 1 is translated as add 1 to the current value of Y and store the
new result at the location indicated by the variable Y.

Any values previously assigned to Y are combined with 1. An expression such as
D =B + Cinstructs BASIC to add the values assigned to the variables B and C and
store the resultant value at the location indicated by the variable D. The variable
D is not evaluated in terms of previously assigned values, but only in terms of B
and C. Therefore, if previous assignments gave D a different value, the prior
valuetis lost when this statement is executed.

o

= g HIEATHKIT®

BENTON HARBOR BASIC | 5-47

- This command lists the program on the console terminal for reviewing, editing,

etc. The form of the list command is:

LIST [iexp] B.H. BASIC
LIST [iexpl], [iexp2] EX. B.H. BASIC

Line numbers are indicated by the optional integer expressions. If no line
numbers are specified, the entire program is listed. If a single line number (“iexp1”) is
specified, EX. B.H. BASIC lists that single line. BASIC lists the indicated line and the
balance of the program lines. You can use a CONTROL-O or CONTROL-C to
abort the listing. If both of the optional line numbers are specified, separated by a comma

- (,), alllines within the range of iexp 1 to iexp2 are listed. You can abort a listing by using

the control characters. Refer to “Editing Commands” (Page 5-71) or to “Appen-
dix B” (Page 5-83) for a complete explanation of these functions.

The following are examples of the LIST command.

10 LET A=5:LET B=6

20 PRINT A,B,A+B,

30 LET C=A/B

40 PRINT C

50 END
*RUN

5 6 11 .833333

END AT LINE 50
*LIST

10 LET A=5:LET B=6
20 PRINT A,B,A+B,
30 LET C=A/B '
40 PRINT C
50 END

*LIST 20

20 PRINT A,B,A+B,
*LIST 20,40
EX. B.H. BASIC only
20 PRINT A,B,A+B,
30 LET C=A/B
40 PRINT C

*

5-48

SECTION FIVE

B griEATHKIT|)

ON...GOSUB

The ON . . . GOSUB statement allows you to program a computed GOSUB.When
you use the ON ... GOSUB statement, use a RETURN at the end of the sub-
routine to return program control to the statement following the ON . . . GOSUB
statement. The form of the ON ... GOSUB statement is:

ON iexpl GOSUB iexp2,, iexpn

When itis processing an ON . . . GOSUB statement, BASIC evaluates the expres-
sion “iexp1” and uses the result as an index to the list of statement numbers
iexp2 thru iexpn. If the expression “iexp1” evaluates to 1, for example, control is
passed to the line number given by the expression “jexp2.” If the expression
“jexp1” evaluates to 3, for example, control is passed to line number given by the
expression “iexp4.” If the expression ‘“iexp1” evaluates to 0, or to an index

greater than the number of statement numbers listed, control is passed to the next

program statement.

ON...GOTO

TheON ... GOTO statement allows you to perform a compufed GOTO. Theform
of the ON ... GOTO statement is:

ON iexpl GOTO iexp2,, iexpn

When it is processing an ON . . . GOTO statement, BASIC evaluates the expres-
sion “iexp1” and uses the result as an index to the list of statement numbers
iexp2 thru iexpn. If the expression “iexp1” evaluates to 1, for example, control is
passed to the line number given by the expression “iexp2.” If the expression
“iexp1” evaluates to 3, for example, control is passed to line number given by the
expression “iexp4.” If the expression “iexp1” evaluates to 0, or to an index

greater than the number of statement numbers listed, control is passed to the next
program statement.

ouTt

The OUT statement is used to output binary numbers to an output port. The form
of the OUT statement is:

OUT iexpl, iexpl

E= g T I ATEIKITS

BENTON HARBOR BASIC

The expression “iexp1” isused as the port address, and ‘“iexp2”’ is the value tobe
placed at that port. Both iexp1 and iexp2 are decimal numbers. The low-order
8-bits generated by the decimal numbers in iexp1 or iexp2 are used. If you wish
to write iexp1 and iexp2 in octal notation for ease in conversion to the actual

binary values, write a subroutine or function to perform octal to decimal conver-

sion.

PAUSE

The PAUSE statement causes BASIC to delay before executing the next state-
ment. There are two forms of PAUSE. In BASIC the form of the PAUSE statement
is:

PAUSE

Once the PAUSE statement is executed, no further statements are executed until
you type a console terminal character. You can terminate PAUSE by typing any
key, and this will not cause the character, to be echoed, but it is good practice to
consistently use one character such as space to terminate PAUSE. In Extended
BASIC the form of the PAUSE statement is:

PAUSE [iexp]

You can also terminate PAUSE by specifying an optional time duration with iexp. If iexp is
specified, PAUSE waits 2 times iexp milliseconds. After 2 times iexp milliseconds pass,
normal program execution continues.

The PAUSE statement is particularly useful when you are viewing long outputs
on a CRT display. You can insert a PAUSE at appropriate points in the program,
allowing you to view the information on the CRT before continuing execution.

POKE

The POKE statement is used to write values into an a351gned H8 memory
location. The form of the POKE statement is:

POKE iexpl, iexp?2

The low-order 8-bits of iexp2 are inserted into memory location iexp1. NOTE:
iexpl and iexp2 must be given as decimal numbers. If you wish to use octal
numbers for ease in referencing to binary notation, you must use a separate octal
to decimal subroutine or function to generate these numbers.

5-49

5-50

SECTION FIVE

CAUTION: You can damage BASIC when using the POKE statement, causing a
failure which could result in loss of program material and/or require reloading
BASIC itself. The POKE statement should be confined to areas of memory, not
used by the BASIC interpreter.

PORT

The PORT statement is used to direct the result of a print statement to an I/O port
other than the console terminal port (3724 or 250,,). You can also use it to direct
the console terminal operations to another port. One of the primary uses of the
PORT statement is directing data printing to a printer. The form of the PORT
statement is:

PORT iexp

The expression iexp is the desired port number (in decimal). If iexp is positive,
the print function is transferred to the indicated port number while the statement
(in the command mode) or the program (in the program mode) is being executed.
After execution is complete, the printing function returns to the console termi-
nal. If iexp is negative, the keyboard functions of the console terminal are
transferred to the desired port, along with the printing functions.

The console terminal is then permanently transferred to the selected port and an
additional PORT instruction must be issued at this new console terminal to
return operation to port 250. Recovery from accidental assignment to a nonexis-
tent port is accomplished by an RSTO0 followed by a warm start (PC = 040 103).

PRINT

The PRINT statement is used to output data to the console terminal. The form of
the PRINT statement is:

PRINT [nexpi sepil . . . nexpn(sepn)]

The expressions and separators contained within the brackets are optional.
When used without these optional expressions and separators, the simple PRINT
statement outputs a blank line followed by a carriage-return line feed.

Printing Variables

The PRINT statement can be used to evaluate expressions and to simultaneously
print their results, or to simply print the results of a previously evaluated

E g F I ATEIKIT®

BENTON HARBOR BASIC | 5-51

expression or evaluations. Any expression contained in the PRINT statement is
evaluated before the result is printed. For example:

10 A=4:B=6:C=5+A
20 PRINT

30 PRINT A+B+C
40 END
*RUN

19

END AT LINE 40

*

All numbers are printed with a preceding and following blank. You can use
PRINT statements anywhere in a multiple statement line. NOTE: The terminal
performs a carriage-return line feed at the end of each PRINT statement unless
you use the separators described in ‘“Use of the , and ;”’ (Page 5-52). Thus, in the
previous example, the first PRINT statement outputs a carriage-return line feed
and the second print statement outputs the number 19 followed by a carriage-
return line feed.

Printing Strings

The PRINT statement can be used to print a message (a string of characters). The
string may be alone or it may be used together with the evaluation and printing of
a numeric value. Characters to be printed are designated by enclosing them in
quotation marks ("). For example:

10 PRINT "THIS IS A HEATH H8"
*RUN
THIS IS A HEATH H8

END AT LINE 65535

*

The string contained in a PRINT statement may be used to document the variable
being printed. For example:

10 LET A=5:LET B=10
20 PRINT "A + B",A+B
30 END
*RUN

A+ B 15

END AT LINE 30

*

5-52 [SECTION FIVE

= A EIE ATEIIT®

When a character string is printed, only the characters between the quotes
appear. No leading or trailing blanks are added as they are when a numeric value
is printed. Leading and trailing blanks can be added within the quotation marks.

Use of the , And ;

The console terminal is normally initialized with 80 columns divided into five
zones. (See CNTRL 3, n for exception.) Each zone, therefore, consists of 14
spaces. When an expression in the PRINT statement is followed by a comma (,)
the next value to be printed appears in the next available print zone. For
example:

10 A=5.55555:B=2

20 PRINT A,B,A+B,A*B,A-B,B-A

30 END
*RUN

5.55554 2 7.55554 11.1111 3.55554

-3.55554

END AT LINE 30

*

NOTE: The sixth element in the PRINT list is the first entry on a new line, as the
five print zones of a 72-character line were used.

Using two commas together in a PRINT statement causes a print zone to be
skipped. For example:

10 A=5.55555:B=2
20 PRINT @,B,A+B,,A*B,A-B,B-A
30 END

*RUN

5.55554 2 7.55554 11.1111
2.55554 -3.55554

END AT LINE 30

*

&

=

== BENTON HARBOR BASIC | 5-53
e e J FTE ATEIIIT®

If the last expression in a PRINT statement is followed by a comma, no carriage-
return line feed is given when the last variable is printed. The next value printed
(by a later PRINT statement) appears in the next available print zone. For
example:

10 LET A=1:LET B=2:LET C=3
20 PRINT A,

30 PRINT B

40 PRINT C

50 END
*RUN

1 2

3

END AT LINE 50

*

At certain times it is desirable to use more than the designated five print zones. If
such tighter packing of the numeric values is desired, a semi-colon (;) is inserted
in place of the comma. A semi-colon does not move the next output to the next
PRINT zone, but simply prints the next variable, including its leading and
trailing blank. For example:

10 LET A=1:LET B=2:LET C=3
20 PRINT A;B;C

30 PRINT A+1;B+1

40 PRINT C+1

50 END
*RUN

1 2 3

2 3

4

END AT LINE 50

*

NOTE: If either a comma or a semicolon is the final character in a PRINT
statement, no final carriage-return line feed is printed.

5-54

SECTION FIVE

g FIE ATEIIT®

READ AND DATA

The READ and DATA statements are used in conjunction with each other to
enter data into an executing program. One statement is never used without the
other. The form of the statements are:

READ vari, . . ., varn
DATA expl, . . . , expn

The READ statement assigns the values listed in the DATA statement to the
specified variables var1 through varn. The items in the variable list may be
simple variable names, arrays, or string variable names. Each one is separated by a ~
comma. For example:

5 DIM A (2,3)

10 READ C,B$,A (1,2)

20 DATA 12,"THIS IS SIX",56
30 PRINT C,B$,A (1,2)
*RUN

12 THIS IS SIX 56

END AT LINE 65535

*

Because data must be read before it can be used in the program, READ statements
generally occur in the beginning of a program. You may, however, place a READ
statement anywhere in a multiple statement line. The type of expression in the
DATA statement must match the type of corresponding variable in the READ
statement. When the DATA statement is exhausted, BASIC finds the next se-
quential DATA statement in the program. NOTE: BASIC does not automatically
go to the next DATA statement for every READ statement. Therefore, one DATA
statement may supply values for several READ statements if DATA statement

contains more expressions than the READ statement has variables. .

DATA statements may contain arbitrarily complex expressions to represent the
data values. Each value expression is separated from other value expressions by a
comma. A field in the DATA statement may be left null by means of two adjacent
commas. This causes the associated variable toretain its old value. For example:

10 A=1:B=1:C=1

20 READ A,B,C

30 PRINT A,B,C

40 DATA 3, ,4

50 END
*RUN

3 1 4

END AT LINE 50

*

= QT IEATHKIT®

BENTON HARBOR BASIC | 5-55 -

If a DATA statement appears on a line, it must be the only statement on the line.
DATA statements may not follow any other statement on the line. Other state-
ments should not follow DATA statements.

DATA statements do not have to be executed to be used. That is, they may be the
last statement in a program, and be used by a READ statement executed earlier in
the program. However, if DATA statements appear in a program in such a place
that they are executed (there are executable statements beyond the DATA state-
ment), the executed DATA statement has no effect. Therefore, location of DATA
statements is arbitrary as long as the expressions contained within the DATA
statements appear in the correct order. However, good programming practice
dictates all DATA statements occur near the end of the program. This makes it
easy for the programmer to modify the DATA statements when necessary.

If an expression contained in a DATA statement is bad, the illegal character error
message is printed. All subsequent READ statements also cause the message. If
there is no data available in the data table for the READ statement to use, the no
data error message is printed.

If the number of expressions in the data list exceed those required by the program
READ statements, they are ignored, and thus not used.

REM (REMARK)

- The REMARK statement lets you insert notes, messages, and other useful infor-
mation within your program in such a form that it is not executed. The contents

of the REMARK statement may give such information as the name and purpose of
the program, how the program may be used, how certain portions of the program
work, etc.. Although the REMARK statement inserts comments into the program
without affecting execution, they do use memory which may be needed in
exceptionally long programs.

REMARK statements must be preceded by a line number when used in the
program. They may be used anywhere in a multiple statement line. The message
itself can contain any printing character on the keyboard and can include blanks.
BASIC ignores anything on a line following the letters REM.

5-56 | SECTION FIVE

=

RESTORE

The RESTORE statement causes the program to reuse data starting at the first
DATA statement. It resets the DATA statement pointer to the beginning of the
program. The RESTORE statement is of the form:

RESTORE
For example:

10 READ A,B,C

20 PRINT A,B,C

30 RESTORE

40 READ D,E,F

50 PRINT D,E,F

60 DATA 1,2,3,4,5,6,7,8

70 END
*RUN

1 2 3
1 2 3

END AT LINE 70

*

This program does not utilize the last five elements of the DATA statement. The
RESTORE command resets the DATA statement pointer and the READ D,E/F,
statement uses the first three data elements, as does the initial READ statement.

The CLEAR command includes the RESTORE function.

O

= g EATIIK BENTON HARBOR BASIC | 5-57
ITre

STEP

The STEP command permits you to step through a program a single line or a few
lines at a time. The form of the step command is:

STEP iexp

where the integer expression iexp indicates the number of lines to be executed
before stopping. Execution of the desired lines is indicated by the prompt NXT =
nnnn, where nnnn is the next line number to be executed. A STEP 2 isrequired to

execute the first program line. All future single-line executions require a STEP or
STEP 1. For example:

10 READ A,B,C

20 PRINT A,B,C

- 30 RESTORE

40 READ D,E,F

50 PRINT D,E,F

60 DATA 1,2,3,4,5,6,7,8
70 END

*CLEAR

*STEP 3
1 2 3
NXT= 30
*STEP
NXT= 40
*STEP
NXT= 50
*STEP
1 2 3
NXT= 60
*STEP 2

END AT LINE 70

*

5-58

SECTION FIVE

= g FIE ATEIIT®

Program Mode Statements

PROGRAM MODE statements are valid only when utilized within a program. If
they are entered in the command mode, an illegal use error is flagged.
DATA

The DATA statement discussed in ‘“Read and Data’’ (Page 5-54) is a program only
statement, although it is used in conjunction with a READ statement, which may
be used in either the command or program modes.

DEF FN

The DEF FN statement defines single line program functions created by the user.
The form of the DEF FN statement is:

DEF FN varname (argil [,argl,, argn]) = expr

. The variable name (varname) must be a legal string or numeric variable name

and cannot be previously dimensioned. However, it may be previously defined.
The latest definition takes precedence. The argument list
“(argl [arg2, ,arg3])” must be supplied to indicate a function. NOTE: The
arguments arereal, not dummy variables, and do change as evaluation procedes.

10 REM DEFINE A SQUARE FUNCTION
20 DEF FN S1(I) = I * I

30 PRINT FN S1(3),I,FN S1(5),I
40 END

*RUN
9 3 25 5

END AT LINE 40

*

END

The END statement causes control to return to the command mode. An END
statement message is typed, giving the line number of the END statement. END
also causes the next statement pointer to be set to the beginning of the program so
a CONTINUE resumes execution at the beginning of the program.

(2

BENTON HARBOR BASIC

An END statement may appear anywhere in the program, as many times as
desired. If a program does not contain an END statement, it “runs off the end.” In
this case, BASIC generates a pseudo end statement at line 65,535.

INPUT AND LINE INPUT

The INPUT statement is used when data is to be READ from the terminal
keyboard or from a mass storage device working through the console terminal.
The form of the INPUT statement is:

INPUT prompt;varl, . . . , varn

If the first element in the list following the INPUT statement is a string, INPUT
assumes it is a PROMPT and types the string in place of a question mark (?). /fno
prompt string is desired but the first variable is a string variable, a leading semi-colon is
inserted. For example:

INPUT ;S3$(2)

This statement tells BASIC that the data to come from the console terminal is to be placed in
a dimensioned string named S3.

Data input from the console terminal has a format identical to the DATA state-
ment.

NOTE: Responses to string inputs must be enclosed in quotes.

Expressions may be supplied and null fields cause the variable to retain its
previous value. If the user response does not supply sufficient data to complete
the INPUT statement, another “?”’ prompt is issued, requesting more data input
at the terminal. CAUTION: If you supply too much data, it will be ignored. The
next INPUT statement issues a fresh READ to the terminal.

The responseto the LINE INPUT statement cannot be continued on another line, as the' zre
terminated by the return key.

When there are several values to be entered via the input statement, it is helpful
to print a message explaining the data needed, using the prompt string. For
example:

10 INPUT "THE TIME IS";T
When this line of the program is executed, BASIC prints
THE TIME IS

and then waits for a response.

5-60

SECTION FIVE

=g FIE ATEIICITS

The LINE INPUT statement is used to input one line of string data from the
console terminal and assign it to a string variable. Its form is identical to the
INPUT form, but the string should not be enclosed in quotes.

STOP

The STOP statement causes BASIC to enter the command mode. The message
stating the line number of the STOP is printed. The next line pointer is left after
the STOP statement, so a CONTINUE statement causes execution to resume on
the line immediately after the STOP statement. The STOP statement is of the

form:

STOP

The STOP statement can occur several times throughout a single program with

_ conditional jumps determining the actual end of the program. The following

example uses the STOP statement to examine a variable during execution.

10 A=1:B=2:C=3
20 PRINT A,B,C
30 END
*RUN
1 2 3

END AT LINE 30
*15STOP

*RUN

STOP AT LINE 15
*PRINT A

1
*15 Stop deleted

*RUN
1 2 3

END AT LINE 30

*

@ FIEATHKIT®

BENTON HARBOR BASIC | 5-61

PREDEFINED FUNCTIONS

Introduction

There are 26 predefined functions in EX. B.H. BASIC and 16 predefined func-
tions in B.H. BASIC. These functions perform standard mathematical operations
such as square roots, logarithms, string manipulation, and special features. Each
function has an abbreviated three- or four-letter name, followed by an argument
in parentheses. As these functions are predefined, they may be used throughout
a program when required. Predefined functions use numeric expressions (nexp),
integer expressions (iexp), and in EX. B.H. BASIC, string expressions (sexp).
Function key words are automatically followed by an open parenthesis “(".

. The abbreviation (narg) is used to indicate a numeric argument, a decimal

number lying in the approximate range of 10738 to 10*%". Certain functions do not
permit the argument to assume this wide range, as indicated in the function
description.

The predefined functions may be used in either the command or program mode.

Arithmetic and Special Feature Functions

The Arithmetic and Special Feature Functions supported by BASIC are identical
for EX. B.H. BASIC and B.H. BASIC with the exception of the functions
Maximum, Minimum, Space, Tab, and Tangent. These are discussed later in this
section. (See Page 5-67.)

THE ABSOLUTE VALUE FUNCTION, ABS (nexp)

The ABSOLUTE VALUE Function gives the absolute value of the argument. The
absolute value is the positive portion of the numeric expression. For example:

*PRINT ABS(-5.5)
5.5 or,

*PRINT ABS(SIN(3.5))
.350783

*

NOTE: The sine of 3.5 radians is —.350783.

5-62

SECTION FIVE

==
S

THE ARC TANGENT FUNCTION, ATN (nexp)

The ARC TANGENT Function returns the arc tangent of the argument. For
example:

*PRINT ATN(1/1)*57.296;"DEGREES"

45.0001 DEGREES

*PRINT 4*ATN(1)

3.14159

* NOTE: = = 3.14159

THE COSINE FUNCTION, COS (nexp)

The COSINE function returns the COSINE of the argument (nexp) expressed in
radians. For example:

*PRINT COS(60/57.296)
.500003

*

THE EXPONENTIAL FUNCTION EXP (NEXP)

The EXPONENTIAL function returns the value e™***. If “nexp’’ exceeds 88, an
overflow error is flagged, as the result exceeds 10%. If “nexp” is less than —88, an
overflow error occurs. An example of the exponential function is:

*PRINT EXP(1),EXP(2),EXP(COS(60/57.296))
2.71828 7.38905 1.64873

*

THE INTEGER FUNCTION, INT (narg)

The INTEGER function returns the value of the greatest integer value, not greater
than “narg.” If the argument is a negative number, the INTEGER function returns
the negative number with the same or smaller absolute value. For example:

*PRINT INT (38.55)
38

*PRINT INT (-3.3)
-3

THE LOGARITHM FUNCTION, LOG (nexp)

The LOGARITHM function returns the natural logarithm (LOG to the base €) of

the argument. You can find the Logarithms of a number N in any other base by
using the formula:

-~

=

O

BENTON HARBOR BAsIC| 5-63
I—IEATI—IKI’I‘G j

LOG, N = LOG.N/LOG.a

- where “a” represents the desired base. Most frequently, “a” is 10 when you are
converting to common logarithms. For example:

PRINT "A POWER RATIO OF 2 IS";10(LOG(2)/LOG(10));"DECIBELS"
A POWER RATIO OF 2 IS 3.0103 DECIBELS

*

THE PAD FUNCTION, PAD (0)

The PAD function returns the value of the keypad pressed on the H8 front panel.
For example:

*PRINT PAD(O)
6 . The #6 key was pressed.

The PAD function uses all the front panel debounce and repeat software con-
tained in PAM-8. (See “The Segment Function,” Page 5-65, for an additional
example.)

NOTE: The PAD function must be completely executed before any other function
will respond. Therefore, CONTROL-C, etc., will not work until you press an H8
front panel key.

THE PEEK FUNCTION, PEEK (iexp)

The PEEK function returns the numeric value of the byte at memory location
iexp.

THE POSITION FUNCTION, POS (0)

The POSITION function returns the current terminal printhead (cursor) posi-
tion. Although the numeric argument (0) is ignored, it must be present to
complete the function. The value returned is a decimal number indicating the
column number of the printhead (cursor) position. For example:

*PRINT POS(0), POS(0O), POS(D); POS(O); POS(D)
1 15 29 33 37

*

THE RANDOM FUNCTION, RND (narg)

The RANDOM number function returns the next element in a pseudo random
series. The RANDOM number generator is not truly random, and may be man-
ipulated by controlling the argument. If narg>0, the random number generator

5-64

SECTION FIVE

g T I ATEIICIT®

returns the next random number in the series. If narg = 0, the random number U
generator returns the previously returned random number. If narg<O0, the value

“narg” is used as a new seed for a random number, thus starting an entire new

series. Using these three inputs to the random number series, the programmer

may continuously return the same number while de-bugging the program,
determine what the series of numbers will be when the program is run, or starta

series of new random numbers each time BASIC is loaded. For example:

. 10 FOR A=0 TO 2
20 PRINT RND(1)
30 NEXT
40 END

*RUN
.93677
.566681
.53128

END AT LINE 40
*RUN

. 564484
.787262
.332306

END AT LINE 40 .
*20PRINT RND(0) U

*RUN
.332306
.332306
.332306

END AT LINE 40
*20PRINT RND(—i)

*RUN
6.25305E-02
6.25305E-02
6.25305E-02

END AT LINE 40
*20PRINT RND(-5)

*RUN
.460968
.460968
.460968

END AT LINE 40

*

C

BENTON HARBOR BASIC
=g I ATEIEIT®

THE SEGMENT FUNCTION, SEG (narg)

The SEG function returns a numeric value which is the correct 8-bit binary
number to display the digit on the H8 front panel LED’s. The argument must be
an integer between 0 and 9. The following program demonstrates the use of PAD,
POKE, and SEG in EX. B.H. BASIC. See the second example for a B.H. BASIC

program.

10 REM A PROGRAM TO USE THE FRONT PANEL LEDS. CNTRL 2,1 TURNS
20 REM ON THE LEDS WITHOUT UPDATE. THE KEYPAD NOW DRIVES THE
30 REM DISPLAY THRU BASIC. 8203 IS THE FIRST LED MEM LOCATION.
40 CNTRL 2,1
50 A=8203
60 FOR I=A TO A+8

~ 70 POKE I,SEG(PAD(O))
80 NEXT I
90 GOTO 60

*RUN

When this program is executed, the H8 front panel LEDs respond to the H8
keypad numeric entries. To escape from the program you would type
CONTROL-C and then press a key on the H8 front panel. NOTE: If BASIC is to be
used, the EX. B.H. BASIC command CNTRL cannot be used to turn on the
displays and turn off the update. Therefore, the program is modified to use a
POKE command at the first line which stops display update. The program escape
routine is still the same. When you are using BASIC, the program is:

40 POKE 8200,2

50 A=8203

60 FOR I=A TO A+8

70 POKE I,SEG (PAD(O))
80 NEXT I

90 GOTO 60

*RUN

5-65

SECTION FiVE

g FIEATEKITS

THE SIGN FUNCTION, SGN (narg) et

The SIGN function returns the value +1 if “narg” is a positive value, 0 if “narg”
is 0, and —1 if “narg” is negative. For example:

*PRINT SGN(5.6)
1

*PRINT SGN(-500)
-1

*PRINT SGN(12-12)
0

*

THE SINE FUNCTION SIN (nexp)

The SIN function returns the sine of the argument (nexp) expressed in radians.
For example:

*PRINT SIN(30/57.296)
.499999

* ’ o~

SQUARE ROOT FUNCTION, SQR (narg)

The SQUARE ROOT function returns the square root of “narg.” The argument
“narg” must be greater than or equal to 0 (for example, positive).

*FOR A=0 TO 5:PRINT A,SQR(A),A*A:NEXT
0 0 0

1 1 1

2 1.41421 4

3 1.73205 9

4 2 16

5 2.23607 25

USER DEFINED FUNCTION, USR (narg)

This function calls a user-supplied machine language function. The user-
supplied function should be stored in high memory above BASICs user set high
memory limit. You should place the starting address of your machine language
function at location USRFCN. (See “Appendix C.””) A RET instruction exits from

the user-defined function. An example of the USR function is given in “Appen- S
dix E,” Page 5-111. Q J

gz aTErCTITO

BENTON HARBOR BASIC | 5-67

THE FREE SPACE FUNCTION, FRE (0) [B.H. BASIC ONLY]

The FREE function returns the number of free bytes of program and variable
storage area available. You must supply the dummy argument 0 to complete the
function. This function is not available in EX. B.H. BASIC. Most frequently, this
function is used in the command mode in conjunction with a PRINT statement.
For example:

*PRINT FRE (0)
1224

*

THE MAXIMUM FUNCTION, MAX (nexp1,....nexpn)

The MAXIMUM function returns the maximum value of all the expressions which are
arguments of the function. For example:

10 LET A=1

20 PRINT MAX(COS(A),SIN(A)/COS(A))
30 END
*RUN

1.55741

END AT LINE 30

*

The expression containing the maximum value is the expression for the tangent of 1 radian,
(1.55741).

THE MINIMUM FUNCTION, MIN (nexp1,. .. ,nexpn)

The MINIMUM function returns the lowest value of all the expressions contained in the
argument. For example:

*PRINT MIN(1,2,3,4,.5)
.5

*

THE TANGENT FUNCTION, TAN (nexp)

The TANGENT Function returns the TANGENT of the argument “nexp” expressed in
radians. For example:

*PRINT TAN (45/57.296)
.999996

*

5-68

SECTION FIVE

= g rIEATEIKITS

THE SPACE FUNCTION, SPC (iexp)

The SPACE function spaces the printhead (cursor) iexp spaces to the right of its
present position. For example:

*PRINT 12,14,SPC(20) ;600 .
12 14 600

*

THE TAB FUNCTION TAB (iexp)

The TAB function moves the printhead (cursor) to the iexp th column. NOTE: If
the printhead is at or past the iexp th column, the function is ignored. For
example:

*PRINT TAB(20);60,70
* 60 70

String Functions (Extended BASIC Only)

Extended BASIC contains various functions for processing character strings in addition to
the functions used for mathematical operations. These functions allow the program to
concatenate two strings, access a part of string, generate a character string corresponding
to a given number, or generate a number for a given string.

THE CHARACTER FUNCTION, CHRS$ (iexp)

The CHARACTER function returns a string that consists of a single character. The character
generated has the ASCII code “iexp.” NOTE: “iexp” is a decimal number and must be
converted to octal for comparison with most ASCII character tables. See “Appendix D” on
Page 0-52 of the “Introduction.” For example:

*PRINT CHR#(65)
A
*PRINT CHR$(70)
F

*

NOTE: If iexp = 0, the generated string is null.

= I ATEKIT® BENTON HARBOR BASIC | 5-69

THE STRING FUNCTIONS, STRS$ (narg)

The STRING function encodes the argument (narg) into ASCII in the same format used by
the PRINT statement for numbers. These characters are returned as a string, with leading
and trailing blanks. For example:

*PRINT STR$(100) } STRS$ function
100
*PRINT "100"

100

*

l Normal string printing

THE ASCII FUNCTION, ASC (sexp)

The ASCII function returns the ASCII code for the first character in the string expression
(sexp). If the string is a null, the ASCII function returns a zero. The return is a decimal
number and must be converted to octal for comparison to most ASCIl tables. See “Appen-
dix D” on Page 0-52 of the “Introduction.” For example:

*PRINT ASC("ABC")
65

*PRINT CHR$(65)

A

*

THE LEFT STRING FUNCTION, LEFTS$ (sexp, iexp)

The LEFT STRING function returns the “iexp” left-most characters of the string expression

(sexp). If “iexp” equals 0, the null string is returned. For example:

*PRINT LEFT$("HELLO, THIS IS A TEST",10)
HELLO, THI

*

THE RIGHT STRING FUNCTION, RIGHTS$ (sexp, iexp)

The RIGHT STRING function returns the right-most “iexp” characters of the string expres-
sion (sexp). If “iexp” equals 0, the null string is returned. For example:

*PRINT RIGHT$ ("HELLO, THIS IS A TEST", 10)
IS A TEST

*

5-70 | SECTION FIVE

(L

THE MIDDLE STRING FUNCTION, MIDS$ (sexp, iexp [, iexp2])

The MIDDLE STRING function returns the right-hand substring of the string expression
“sexp” starting with the “iexp1” th character from the left-hand side (the first characteris 1).
The return continues for “iexp2” characters or to the end of the string if the optional
terminating expression “iexp2” is omitted. For example:

*PRINT MID$("HELLO, THIS IS A TEST",10,10)
IS IS A TE

*

THE NUMERIC VALUE FUNCTION, VAL (sexp)

The NUMERIC VALUE function returns the numeric value of the number encoded in the
string expression (sexp). For example:

*PRINT VAL (".003E-1")
3.00000E-04

*

o

HEATIIKITS

BENTON HARBOR BASIC

EDITING COMMANDS

BENTON HARBOR BASIC provides several commands used to halt program
execution, erase characters, delete lines, add lines, and provide other editing
functions. A great number of these editing commands are common to all the
Heath H8 Software packages. Their operation is covered in detail in the “Console
Driver” section (Page 0-36) of the “Introduction” to this Software Reference
Manual.

Control-C, CNTRL-C

CONTROL-C is a general-purpose cancel key. It can be used to stop a mass
storage input or output operation, stop program execution, stop a listing, and to
stop a program during an input statement. Using CONTROL-C results in the CC
error message (CNTRL-C in EXTENDED BASIC). NOTE: A CONTROL-C causes
the program to terminate at the end of a current statement.

You can continue program execution by using the CONTINUE statement.

Inputting Control

The following control characters take effect when you are inputting information
from the control terminal.

BACKSPACE, BKSP/CNTRL-H

The BACKSPACE key (or a CONTROL-H) causes a one-character backspace. The
backspace code is echoed to the terminal so devices with backspace capability
physically backspace. Attempting to backspace into column zero is illegal and
causes a terminal bell code to be echoed. NOTE: Backspace can be changed at
configuration. See ‘“Product Installation” on Page 0-19 of the “Introduction” to
this Software Reference Manual.

RUBOUT

The RUBOUT key causes BASIC to discard the current line being inputted. A
carriage-return feed line is sent to the console terminal, and the user may now
re-enter the entire line. NOTE: Rubout can be changed at configuration. See
“Product Installation” on Page 0-19 of the “Introduction” to this Software
Reference Manual.

5-72

SECTION FIVE

= F I ATEEKIT®

Outputting Control

The following control characters take effect only when you are outputting
information to the console terminal. They should not be used when you are
inputting information via the console terminal, as they affect characters being
echoed to the console.

OUTPUT SUSPENSION AND RESTORATION, CNTRL-S AND CNTRL-Q

Type CONTROL-S to suspend the output and to suspend program execution.
This command is particularly useful when you are using a video terminal; you
can use the CONTROL-S (suspend) feature each time a screen is nearly filled and
information at the top will be lost due to scrolling.

By typing CONTROL-Q, you permit BASIC to continue execution and output-
ting information to the terminal. CONTROL-Q cancels the CONTROL-S func-
tion.

The DISCARD FLAG, CNTRL-O and CNTRL-P

Type a CONTROL-O to toggle the DISCARD FLAG. Setting the DISCARD FLAG
stops output on the terminal but does not halt program execution until you
retype CONTROL-O or until you type a CONTROL-P to clear the DISCARD
FLAG. CONTROL-O is often used to discard the remainder of long listings and
other similar outputs. BASIC clears the discard flag when it returns to the
command mode or when an INPUT statement is executed, so that the prompt
will appear.

Command Completion

When you are inputting information from the console terminal in the command
mode, or in response to an INPUT command, BASIC checks the incoming
characters for the initial characters of a keyword. As soon as enough characters of
a keyword are entered to uniquely identify it, and it is distinguished from a

variable name, BASIC completes the keyword into the terminal. For example, to

enter the command SCRATCH, type SC. Since SC uniquely determines
SCRATCH and SC is not a legal variable name, BASIC types the characters
RATCH immediately following the SC. Striking the backspace key backspaces
over the entire word SCRATCH.

Function keywords are automatically followed by an open parenthesis ““(”.
Other keywords are immediately followed by a blank.

BENTON HARBOR BASIC

=g IEATEIKITS

Enforced lexical Rules

BASIC enforces two lexical rules during input.

1. Two adjacent alphabetical characters must start a keyword. For exam-
ple, XX isillegal as no keyword starts with “XX” and “XX" is an illegal
variable name. This rule is excepted when following a REMARK
statement or when the characters are contained within quotes (indicat-
ing a string).

2. A quoted string must be closed; every quote character must have a
mate on the same line.

Should a character be typed which is in violation of these rules, a bell code is
echoed and the character is ignored.

General Text Rules

BLANKS

BASIC programs are generally “free format.” That is, blanks (spaces) may be
included freely with the following restrictions.

1. Variable names, keywords, and numeric constants may not contain
imbedded blanks.

2. Blanks may not appear before a statement number.
LINE INSERTION

You can insert lines into a BASIC program by simply typing an appropriate line
number followed by the desired line of text. This is done in response to the
command mode prompt (an asterisk). Except when running a program, BASIC
remains in the command mode, showing a single asterisk (*) as a prompt. NOTE:
The text should immediately follow the last digit of the line number. Although
intervening blanks are allowable, they waste memory. BASIC automatically
inserts a blank when listing the text. For example:

*100PRINT "HEATH BASIC"
LIST
100 PRINT "HEATH BASIC"

5-73

5-74

SECTION FIVE

e ETE ATEIIITO
=

LINE LENGTH

A line in BENTON HARBOR BASIC is restricted to 80 characters, and lines in
Extended BENTON HARBOR BASIC are restricted to 100 characters. This re-
striction on line length is completely independent of the console width, which
was established by the software configuration procedure (see Page 0-19 of the
“Introduction” to this Software Reference Manual). NOTE: If the console termi-
nal, for example, was set at a width of 34 characters, the console will display
three complete lines for one line of BASIC.

LINE REPLACEMENT

Replace existing program lines by simply typing the line number and the new
text. This is the same process you use to insert a new line. The old line is
completely lost once the new line is entered.

LINE DELETION

Delete lines by typing the line number immediately followed by a carriage-
return. You can leave blank lines by typing the single space before typing the
carriage-return.

C

BENTON HARBOR BASIC | 5-75

(== AT

ERRORS

BASIC detects many different error conditions. When an error is detected, a
message of the form:

! ERROR-(ERROR MESSAGE) [at line NNNNN]

is typed. BASIC returns to the command mode (if it is not already in the
command mode), ringing the console terminal bell. If BASIC is in the command
mode, the ““atline NNNN” portion of the error message is omitted. For example:

*PRINT 1/0

! ERROR — /O
*10PRINT 1/0
*RUN

! ERROR - /0 AT LINE 10

*

NOTE: If a line of BASIC contains an error, you can correct it by retyping the
entire line. Once the line number is typed, the contents of the old line are lost. To
delete a line, type the line number and follow it with a carriage-return.

Error Messages

The following “Basic Error Table” describes the error messages generated by
BENTON HARBOR BASIC and Extended BENTON HARBOR BASIC. Two col-
umns of error messages are given, as BENTON HARBOR BASIC provides a
shortened form of the error messages. An explanation is given after each error
message in the Comments column.

‘Recovering from Errors

When an error is detected, BASIC enters the command mode with the variables
and stacks as they were at the time of the error. Thus, the user can use PRINT and
LET statements to examine and alter variable contents. Likewise, a GOTO state-
ment can be used to set the next.statement pointer to any desired statement
number. Often, a combination of these techniques allows the user to continue a
program with the error corrected.

NOTE: If program text in an EX. B.H. BASIC program is modified in any way, the GOSUB
and FOR stacks are purged. If an error occurred in a GOSUB routine, or a FOR LOOP, the
entire program must be restarted. If you modify text in a B.H. BASIC program, B.H.
BASIC CLEARs all variables.

B5-76 | seCTION FIVE

BENTON HARBOR BAsSIC | 5-77

= g FIE ATEIIKITS
- BASIC ERROR TABLE
BASIC EXTENDED COMMENTS
BASIC

AC ARG CT Argument count. Incorrect number of
arguments supplied to a DEF defined function.

CC CNTRL-C CONTROL-C. Program execution or other
operation aborted by a CONTROL-C typed
at the console terminal.

DE NO DAT Data exhausted. A READ called for
more data than is available in the
DATA statement.

/o /0 Divide by zero. An attempt to divide
by zero. NOTE: Either dividing by the
number zero or dividing by an expression
which evaluates to zero generates
this error.

IN NUM Illegal number. The line number
referenced by a command or program
statement is not used by BASIC.

Iu USE Illegal usage. A command or statement
is used in the improper context.

NX NXT Next variable missing. No FOR
statement matching the accompanying
NEXT statement.

ov OVRFL Overflow. Memory space is filled
by program text.

RE RTN Return error. A RETURN is encountered
without a calling statement.

S# STAT# Statement number. The referenced

statement number does not exist in
the program.

B5-78 | SECTION FIVE

=g FIEATEIRKITS

BASIC

EXTENDED
BASIC

SY

MO

SR

SC

ND

IC

FU

TE

SYN

MEM OV

SUBS RANG

SUBS CNT

Dim?

ILL CHA

FN ?

TAPE

COMMENTS (U

Syntax error. Command, statement, or
function uses incorrect separators,
functions, etc..

Table overflow. One of the internal
tables has grown too large for memory.
Check GOSUBs, FOR loops, and DIM.

Subscript range. The subscript size of .
a dimensioned variable exceeded the
size defined by the DIM statement.

Subscript count. The number of sub-
scripts assigned to a variable exceeds
the number defined in the DIM statement.

Not dimensioned. The subscripted
variable has not been dimensioned
in a DIM statement.

Illegal character. An improper character

is assigned to a command or function
NOTE: In B.H. BASIC, an attempt to assign
a string to a numeric variable results

in an illegal character message.

Function error. No single line

function defined by a DEF statement

was found when the FN function was
encountered. NOTE: The DEF FN must be
executed prior to executing

the FN function.

Tape error. An error in handling
the mass storage device at the load
dump port.

g FIE ATEIICITS

BASIC

BENTON HARBOR BASIC

EXTENDED
BASIC

CNTRL-B

STR LE

TYP CNFLC

COMMENTS

CONTROL-B error. A CONTROL-B
entered from the console terminal,
but no CONTROL-B processing in the
program.

String length error. The length of
a string exceeded 255 characters.

Type conflict. String data supplied
for a numeric variable or numeric
data supplied for a string variable.

5-79

5-80 | SECTION FIVE

BENTON HARBOR BAsIC | 5-81
g IS ATEKITS '

APPENDIX A

Loading Procedures

Loading From the Software Distribution Tape

Load the tape in the reader.

Ready the tape transport.

Press LOAD on the H8 front panel.

A single beep indicates a successful load.
Press GO on the H8 front panel.

The console terminal will respond with:

OO0k Wb

HEATH/WINTEK H8 BASIC
BENTON HARBOR BASIC ISSUE # 05.01.00
COPYRIGHT 01/77 BY WINTEK CORP.

7. Configure B.H. BASIC or EX. B.H. BASIC as desired, answering the follow-
ing questions. Prompt each question by typing its first character on the
console terminal keyboard.

*AUTO NEW-LINE (Y/N)?
*BKSP = 00008/

*CONSOLE LENGTH = 00080/
*HIGH MEMORY = 16383/
*LOWER CASE (Y/N)?

*PAD = 4/

*RUBOUT = 00127/

*SAVE?

&

Before executing SAVE, have the tape transport ready at the DUMP port.
9. TouseBASICdirectly from the distribution tape, type the return key at any
time rather than a question prompt key. The Console Terminal will dis-

play:

B.H. BASIC # 05.01.00

*

BASIC is ready to use.

5-82 | secrion FIVE

e A I ATEIEIT®

Loading From a Configured Tape -

Load the tape in the tape transport.
Ready the tape transport.

Press LOAD on the H8 front panel.

A single beep indicates a successful load.
Press GO on the H8 front panel.

The console terminal responds with:

o gk W=

B.H. BASIC # 05.00.00

*

BASIC is ready to use in the configured form.

BENTON HARBOR BASIC

= g FIE ATEIIITS

APPENDIX B
A Summary of BASIC

For additional details, refer to the page number that is
given with each of the following topics.

See Page

Numeric Data 5-9
Numbers may be real or integer with the following characteristics:

Range 10738 to 10%%7

Accuracy e 6.9 digits.

Decimal range 0.1 to 999999.

Exponential format (%) X.XXXXXE (+) NN
Boolean Data | 5-10

Integer numbers from 0 to 65535 represent two byte binary data from
00000000 00000000 to 11111111 11111111. Fractional parts of numbers be-
tween 0 and 65535 are discarded.

String Data (Extended BASIC Only) 510

Data is all printed in ASCII characters plus the BELL, BLANK and LINE FEED
with the following characteristics:

Maximum string length 255 characters.

Enclosure Quotation marks () on both ends.

Multiple lines Not allowed for a single string.
Variables | 5-11

Variables are named by a single letter (A through Z), or a single letter followed by
a single number (0 through 9). For example: A or A6.

5-84 | SECTION FIVE

e A FTE ATELICIT®

See Page
Subscriptéd Variables 5-12

Subscripted variables are named like variables, but are followed by dimensions
in parentheses. Subscripted variables are of the form:

An(N, N,, N.) For example: A(1,2,7) or A6(1,5).

You must use a DIMENSION statement to define the range and number of
~ allowable subscripts for a variable. ‘

Arithmetic Operators 5-14

Listed in order of priority. Operators on the same line have equal precedence.
Parenthetical operations are performed first. Precedence is left toright if all other
factors are equal.

SYMBOL EXPLANATION

- Unary negation logical compliment

0 Exponentiation. Ex BASIC only
* Multiplication division
+ - Addition subtraction

Relational Operators 5-18
SYMBOL EXPLANATION
= Equal to
Less than

<= Less than or equal to

> Greater than
> = Greater than or equal to
<> Not equal to

BENTON HARBOR BASIC | 5-85
g TS ATEIIITS

See Page
‘- Boolean Operators 5-19

Boolean operators perform the Boolean (logical) operations on two integer
operands. The operands must evaluate to integers in the range of 0 to 65535. The
operators are:

NOT Logical complement, bit by bit
OR Logical OR, bit by bit
AND Logical AND, bit by bit
String Variables 5-21

String variables may be either subscripted or nonsubscripted. They take the
same form as numeric or Boolean variables but are followed by a dollar sign ($) to
indicate a string variable. For example: A$ A6$ A$(1,2,7) or A6%$(1,5).

String Operators 5-22

String expressions may be operated on by the relational operators as well as the
plus (+) symbol. The plus symbol is used to perform string concatenation.

Line Numbers 5-25

When itis used in the program mode, BASIC requires that each line be preceeded
by an integer line number in the range 1 to 65535.

The Command Mode 5-23

The command mode does not use line numbers. Statements are executed when a
carriage-return is typed.

Multiple Statements on One Line 5-25%

BASIC permits multiple statements on one line. Each statement is separated
from the others by a colon (:). DATA statements may not appear on lines with
other statements.

«See ‘“Basic Statements.”

5-86 | secTioN FIVE

= g IEATHKITY
Command Mode Statements =~
COMMAND FORM DESCRIPTION SEE Pg.
BUILD BUILD iexp1, iexp2 Automatically generates program 5-27
line numbers starting at iexp 1
in steps of iexp2.
CONTINUE CONTINUE Resumes program execution. 5-27
DELETE DELETE [iexp1, iexp2] Deletes program lines between 5-28
iexp1 and iexp2.
DUMP DUMP “name” Saves current program ‘‘name’”’ on 5-28
mass storage media at load dump port; '
“name” is up to 80 ASCII characters.
LOAD LOAD ‘“name” Loads program ‘“name’” from mass 5-29
storage media at load dump port;
“name” is up to to 80 ASCII characters.
Current program is destroyed. ~
RUN RUN Start execution of current program. 5-30
Preclears all variables, stacks, etc..
SCRATCH SCRATCH Clears all program and data 5-31
' SURE?Y storage area. Any response to
SURE but Y cancels SCRATCH.
VERIFY VERIFY “name” Performs a checksum on the 5-31

mass storage record titled
“name.” No response if record is bad.

: BENTON HARBOR BASIC | 5-87
g rIE ATEIKITS

Command and Program Mode Statements

COMMAND FORM DESCRIPTION SEE Pg.

CLEAR CLEAR |[varname] Clears all variables, arrays, string buffers, etc. 5-33
Optionally clears named variable (varname).
Specifies functions and arrays as V(.

CONTROL CNTRL iexp1, iexp2 CNTRL 0 sets a GOSUB to line iexp2 5-34
when a CONTROL-B is typed.

CNTRL 1 sets iexp2 digits 5-35
before exponential format is used.

CNTRL 2 controls the H8 front . 5-35
panel. If iexp2: = 0, display off;

=1, display on without update;

=2, display on with update.

CNTRL 3 sets the width of a 5-35
print zone to iexp2 columns.

CNTRL 4 controls the H8 hardware 5-36
clock. iexp2 = 0, clock off. iexp2 = 1,
clock on.
DIMENSION DIMvarname(iexp1l [, ,iexpn]) [,varname2(....)]
Defines the maximum size of 5-36

variable arrays.
FOR/NEXT FOR var = nexpl TO nexp2 [STEP nexp3]

NEXT var Defines a program loop. Var is 5-37
initally set to nexp1. Loop
cycles until NEXT is executed;
then var is incremented by
nexp3 (default is +1). Looping
continues until var > nexp2
(or less than nexp2 if STEP is
negative). The statement after
NEXT is then executed.

5-88 | section FIVE

e A EIEATEIIIT®

COMMAND FORM DESCRIPTION SEE Pg.

FREE FREE Displays the amount of memory 5-41
assigned to tables and text

GOSUB/ GOSUB iexp Transfers execution sequence 5-42
RETURN RETURN " of program to line iexp (the

beginning of a subroutine). RETURN

returns execution sequence to

the statement following the

calling GOSUB.

GOTO GOTO iexp Unconditionally transfers the 5-44
program execution sequence to
the line iexp.

IF/THEN IF expression THEN If the expression is true, 5-45
iexp IF expression control passes to iexp line
THEN statement or to ‘“‘statement.” If the

relation is false, control
passes to the next independent

statement. Q)

LET LET var = nexp Assigns the value nexp (or sexp 5-46
LET var$ = sexp in the case of strings) to the
variable var (or var$). LET keyword
is optional.

LIST LIST[iexp1] [,iexp2] Lists the entire program on the 5-47
console terminal. Lists the
line iexp1 or the range
of lines iexp1 to iexp2.

ON/GOSUB ON iexp1 GOSUB Permits a computed GOSUB. Iexp1 5-48
iexp2, ... ,iexpn. is evaluated and acts as an index
to line numbers iexp2 thru iexpn,
each pointing to a different
subroutine.

A

HEATHKIT®

COMMAND

BENTON HARBOR BASIC | 5-89

FORM DESCRIPTION

ON/GOTO

ouT

PAUSE

POKE

PORT

PRINT

ON iexp1 GOTO Permits a computed GOTO. Iexp1
iexp2, ... ,iexpn is evaluated and acts as an index
to line numbers iexp2 thru iexpn.

OUT iexp1, iexp2 Outputs a number iexp2
to output port iexp1.

PAUSE (iexp) Ceases program execution
until a console terminal key
is typed. Ceases program
execution for 2 X iexp mS.

"POKE iexp1, iexp2 Writes a number iexp2 into

memory location iexp1.

PORT iexp Assigns the print function to
port iexp. Assigns the Console
Terminal function to the
device at port iexp if iexp
is negative.

PRINT(nexp. sep1. .. nexpn(sepn)

Prints the value of the expression

(s) exp with a leading and

trailing space. Expressions may be
numeric or string. If the separator

is @ comma, the next print zone is
used. If the separator is a semicolon,
no print zones are used. No
separator prints each expression
value on a new line.

READ & DATA READ varl, .. ,varn The READ statement assigns the

DATA exp1l..,expn values expl thru expn in the

data to the variables var1 thru varn.

SEE Pg.

5-48

5-48

5-49

5-49

5-50

5-50

5-54

5-90

SECTION FIVE

COMMAND

FORM DESCRIPTION

REMARK

RESTORE

STEP

REM Text following the REM is not
executed and is used for
commentary only.

RESTORE ' Causes the program to reset the
DATA pointer, thus reusing data
at the first DATA statement.

STEP iexp Executes iexp lines of the
' program. Then returns BASIC to
the command mode.

Program Mode Statements

DEF

END

INPUT

LINE INPUT

STOP

DEF FN varname (arg list) = exp

Defines a single-line program
function created by the user.

END Causes control to return to the
command mode.

INPUT prompt; varl,. ... ,varn

Reads data from the console
terminal. String data must be
enclosed in quotes.

LINE INPUT prompt; vart, ... ,arn

Reads string data from the
terminal. String data for
LINE INPUT is not
enclosed in quotes.

STOP Causes BASIC to enter the command
mode when the statement containing
STOP is executed.

= I ATEIIITS

SEE Pg.

5-55

5-56

5-57

5-58

5-58

5-59

5-59

5-60

T

= g FIE ATEIICIT®

BENTON HARBOR BASIC

Predefined Functions

FUNCTION
ABS (nexp)
ATN (nexp)
COS (nexp)
EXP (nexp)
INT (narg)
LOG (nexp)
PAD (0)

PEEK (iexp)

POS (0)

RND (narg)

SEG (narg)

SGN (narg)

SIN (nexp)

SPC (iexp)

TAB (iexp)

SQR (narg)

DEFINITION

Returns the absolute value of nexp.
Returns the arctangent of nexp (radians).
Returns the cosine of nexp (radians).
Returns e"e*»,

Returns the integer value of narg.
Returns the natural logarithm of nexp.

Returns the value of the H8 front
panel key pressed. Includes key debounce.

Returns the numeric value at
memory location iexp.

Returns the current terminal printhead
(cursor) position (by column number).

Returns a random number. If narg >0,
RND is next in the series. If narg = 0,
RND is the previous random number. If

narg<0, RND algorithm uses narg as a new seed.

Returns the correct eight-bit number
to display narg (0-9) on the H8 LEDs.

Returns +1 if narg is positive.
Returns —1 if narg is negative.
Returns 0 if narg is zero.

Returns the sine of nexp (radians).

Positions printhead (cursor) iexp
columns to the right.

Position printhead (cursor) to
the iexp th column.

Returns the square root of narg.

SEE Pg.

5-61
5-62
5-62
5-62
5-62
5-62

5-63

5-63

5-63

5-63

5-65

5-66

5-66

5-68

5-68

5-66

5-92 | secTION FIVE

A FTE AT ELEIT®

— -

FUNCTION DEFINITION SEE Pg. (L

USR (narg) Calls a user-written machine language 5-66
function to evaluate narg.

FRE (0) . Returns the amount of free memory in B.H. BASIC. 5-67

MAX (nexp1, . .. ,nexpn) Returns the maximum value of expressions 5-67
nexp1 thru nexpn.

MIN (nexp1, ... ,nexpn) Returns the minimum value of expressions 5-67
nexp1 thru nexpn.

TAN (nexp) Returns the tangent of nexp (radians). 5-67
CHRS$ (iexp) Returns the ASCII character iexp. 5-68
STR$ (narg) Returns narg encoded into ASCII with | 5-69
leading and trailing blanks as in the
print statement.
ASC (sexp) Returns the ASCII code for the first 5-69
character in the string sexp. Q
LEFT$ (sexp, iexp) Returns the left iexp characters of the 5-69

string sexp.

RIGHTS$ (sexp, iexp) Returns the right iexp characters of the 5-69
string sexp.

MIDS$ (sexp, iexp1) [iexp2] Returns the substring of the string sexp 5-70
starting with the iexp1 th character and
ending with the iexp2 th character if
iexp2 is specified. If not specified,
returns iexp1 th character to the end.

VAL (sexp) Returns the numeric value of the number 5-70
encoded in the string.

— Editing Commands

= I EATIHKITS

BENTON HARBOR BASIC | 5-93

COMMAND

CONTROL-C

CONTROL-S

CONTROL-Q

CONTROL-0O

CONTROL-P

FUNCTION

General-purpose cancel. Returns
BASIC to monitor mode from any
operation or program execution.

Suspends the output to the console terminal
and suspends program execution.

Restores the output to the console terminal
and restores program execution.

Toggles the output discard flag.
Does not stop program execution.

Clears the discard flag set by CONTROL-O.

SEE Pg.
5-71
5-72
5-72
5-72

5-72

5-94 | SECTION FIVE

—— E 5-95
=i mATHRITS BENTON HARBOR BASIC ,

APPENDIX C

Basic Utility Routines

The following pages contain a description of several
utility routines included in BASIC (some are only
available in Extended BENTON HARBOR BASIC).
They can be used with user-written machine lan-
guage routines called by the USR function. See “Ap-
pendix D” for Utility Routine entry points.

5-96 I SECTION FIVE

R TR T g T
e TR e T T e A IR
TR P, s s U T e
.......... e e e P
...... Tt L T T C e o LR IR
TR RO s T SAS HLS N T0s L e, x o8 | TS e .
(NDILYNOANOD KNILNIMK €926T/60 LHOTMALOD XXX 6L o

T s s T, iEiTaRedeT T e, T gy R U e
s e TR L UNOILYMOAMNOD XNILNIMX MOA 694760 NIML3T *0 °f X% 94 ... P

R L ISR T
s e s e s e tMALFMAYILINT, JISVE KNIUANINX - JISPE KKK WL T e .
U SRR SRR TP s U N IR g ATy SERIRE e
B 3994 L4-Md9oTO BEITIEET s TR, . . PONILSIT JJMN0S 313799

ZL78T/207 6V TN WSUBX THLVIH FYILIYAYAINT TOTEYT NIINIM -

BENTON HARBOR BASIC | 5-97

*NISN FHL A ANOWAW OINI
ANILNOY NILL

......... g GG TS O
£4/8T/20 0'TA HSYEX HIVIH

mmum_u.u.a 0 MI NJJMSN £TT 000 000

N339 3nvH hm:: HITHM

LT T SERREETEED e CNOTLANA 2AVNONY T ATIWIESY T VIS WO YT < s
*MIALIMSMILINT 2ISPd NIINIM -~]

i
;
;
4
K
;

5-98 lsecnorq FIVE

eereseen ceeeeean P EER R Ceeerersenaaen feeeeeetee s P Ceeeeee e Ceeeeeaen Ceeiesaaas et Ceeeen e B R R R e e aieeere e

...... i MNOMMZORANL kR AN 9L
5971

NOILINNA I3INIAIINN X naa. . an+yMy3 vor

e N e BT E S AL sane AN .. FoT
JI*uM3 29T

781
MSMMI 95T

NI MM3 omﬁ .. R e e e

E[AR D gt) LTI TR ..

18T’

2 THLND . S MM OET R
42T
L O-TIDMLINGD X 03I 32°MN3 8IT o

..... e e e e e e CET

VIM0W INYWHOY 0L NI AT193MIT §38864 0N1INDD ¥ SET

3994 hh ¢m¢ 1O T¥icIieT

BENTON HARBOR BASIC | 5-99

HEATEIXIT®

Iryya oL .. KOG

= (31 1IX3 X 90c
xumzzz 40 mmumnn« = (31) AMING % . 50¢

*M3IQILNI NV OLINI ((I1)) S3IXIA XIAI X .. £0Z

B0 ..:.:.:.......... :......
........ e I NOTLDYN S INY, HIOIINT OINT MIAWON LINHS - XIAL XK IO

.. e AEY BB X 98T

1131402 LIX3 X 56T
SSIMTIY. 139N = (31 AMLING X V6l

:.:‘......... .:................‘..‘...‘................ 00 4 LU L
P g O NOTLYAOT X B L PSP s
..... X9DUEM YT OINT "HOLOANNAAIY X, 3HL 40 SINIINDD FHL SIT400 AX2 X 16T
..................................... KOG
............. SRR PSPPI SR B X S A k.04l

ﬂmq

(A OINT (XIS A6 Y ixA Wk oay T e

3INIPA 0 SSINTIY = (D) AMING L A

....... T e G TNT HATOR KD XD RR g d T
\4 3994 LL-MAY-TO0 EVISTIET

LL/78T/80 O'TA WSYBX HLIV3IH

........................ RN VPR TR PRI TRRPEPEPEPRPEPRRY:
... el MEHATATAASY 838N X6
JINON

CCAMOMAW 40 117314 Y S0M3IZ 0MZ X vvc

TegT

3NON AMLING X 5£

TCADAY TRLTM T (X009) T FONVHAXS - TADX Xk £

I O I §3sn X 8ZT
T34AL
MIAWNN = (3D

*I138S3N44NS X v

AY¥Y SOMIZ ONTIVIT *MIAWNN 3IVTd 5 ¥V SY MIQIINI NV S34AL Il X £cT e

SECTION FIVE

5-100

*MINIUINT TYWIIIT IJHAL — Tl XX 1T

T-X3JJv# = (3D X 91C .. e
FNT9A HITWAN =" (XDDY) 1
anNavn = (31> AN

THOYH T LLC949ST0 SIS TYET . SIANTLAGYENS ALTITLN
LL/8T/E0. . 0' TN WSYSX HIVIH *NMILINANIINT, 2ISYT. NAUINIM — DISWH ..

BENTON HARBOR BASIC I 5-101

.. O BOE BOU GOY T G T G e e
: LLT OO 000 000 50~ X 50f
G G e Grpr KO e
.. SLT YT 9T 9v1 o X £0f e e

B0 500 DB Boy e e e e
.. QON omﬂ °°° °°° °0°H * ﬁon DI I I I I T I S TP
........... FET OO D00 oG T g e g
.. 00¢ 00I 000 000 S K BT L
TOC 00T 000 000 N 1 ¢ L S : 744
... K LB
X3 TW O ZW el MIFWAN TYNTIFT * F4E .
.. ¥ 86c TSROSO
.................... et e K RaE
... “mmJ-&z¢xm * m&m esae D I R
.. g
... COLYI IIZIAPWNON K TeT
~NON NO 319¥M340 LON TIIM 131734408 SINTIAON INTOL aNTivoTd IHL * 04E
X 68C
e NATS LA HLTSOAL0 R R
e AHL ST LTE VLY INYOTAINGIS LSOW 3HL LYHL 08 “T3ZITYWMON 39 K LB
SAYMIY TTINOHS SYIFWNN LNIOA ONILIWOIY IYHL FioN *1id ¥ivd * T o8E
..................... ANYITAINGIS LSOW 3HL SI (DOOT) LI LX3IN 3HL ¢LId N9IS 3IHL ST 114 % &8¢
MITM0 HOIH JHL *NOTLVLION LNIWITINOH '§,0M1 NT T3NOLS 3y ' vaE
.................... SHITNON 3HL “SLIA ¥T 40 TWLOL ¥ ¥OJ ¢S3LAd £ SAdNIIQ YSSIINWW 3IHL % €8T .
X Z8E
.. R B
19SS I INVW ¥ 088
.. K BLT
....................... s
e, Q BAYNTY ST (YSSTINGW INY) ININOGAXT SLI 1ASYD WID34S X 4le
Y SY TA1YIYNL SI 0M3Z MIFGWAN IHL X >
0T~ 40 LININOJIX3I NY_ $DO0Z SY 13YILNI SI 0 40 LININOIXI NY SNHL X

SECTION FIVE

5-102

¥ NS gENGL e e et e

e PO e e e PP LLESELL e eeaes .
I5¢

RO P Y s A s3sn X 058

APPSRVt Tivs KT e
....................................... e INON . AMLING X 8ve

T3ZITIVHNON (X22Y) 1IX3 X 8rf
.................. e ANAN L AMINT XS

81L

........ e TTAONYHONG 30779 13174408

1ns3y = XJav L1X3 x prg T T

............... . L X KL R
............... e I INTOG ANTLY0T, - 1Y XX 60F

BENTON HARBOR BASIC I 5-103

....... R TR T
....... B I I T PSR B I T T

X nn3 NITdd €48 A

X nn3 MNWAd 98

A X XJ2Y = X]JJY

PO (1o N G CREIN G

8 JIYd LL-MNAY-TO LPICTIET L0
£LL4/78T/780 0'TA WSYBX HIVIH .¢Ume¢mmth JHan Auhzﬂz - Uﬁ.Tz

vt

Py

HEATIHIXIT®

5-104 l SECTION FIVE

vob
. e L T B e g g0k . e T PTIN
.............. ey S ge PO o
L ALAE LSYT 40 SSANILY = (A e KIOb T .
1023 ONTNLS 40 HIONIT =" (¥) iTX3 ¥ 00y
................. e AX3L3MOIS 01 SSIYANY = W) T es B PR
P e AXE L3NG o L bt
B L e s e e X, 465 ... e e
“NOITYINTS N3N X948
B B TIASY NI QUINT MIAWON ANI04 ONTLIY0TA Y SLNIAANGD YId X 565 . B e e e
¥ pes
........... e D TTASY DL ONTAYONS - VLA KK E6E
.................. R PSPPSR PP TP ey Giv e TP RPN
e PP PTR e e e e Y PP T
68¢
. TSP e e e LRI sEsn x.88g ... R PP T
e e PP ORI Pt P - 98k
S, e B e JALYTAN (CTHY LIX3 X988 BN T,
1X30 40 's83NTTy = (THY T ANINT X 58¢
B PP e e e K
TNN C-+43 33 CNNNT NNNN X £8%
e e e e e e X €82 BN e e
XYINAS x 188
e e e e ST e ST X 088 .. e TR ..
..................... R . e N ¥..08%
INIYA INIOA ONILY0Id ¥ OLNI ONINLIS IIISY NY SINIANOD 41V X 88
... v P AR A R DS
TP e e NONTLE0TS QL TIQSY o LY BELPEE
................... YO BT A e R LU TAY
B s e LELLBT/E0 0N TN HSYBX HIVIH et TMILIMIHIINT OISVE NIINTM = OTavd

BENTON HARBOR BASI(J 5-105

e . e E e e e e e e P e N e FS N :.I.WWm.:WMPWNZMMWmmZ...Z ..

0hzuzuﬁ¢hm =4
...................... RO ¥ B o =713 b I S - {1 L=Y =1]

DOOZ4DEETAVOLTCBECC

NTOZ S REET 0L T6DE

DEOT FNLEEFDOLTNEZO

6465646 GO e ST 6666 S O RO e

........... S Io
B PSR HioEve6oT v O RS R 00T 660 ap e e

O RPTI e I . e e
............................. e ST TGN ST . R TH

................. e O
............... L B3NTN LNIOS ONTLYOTS XX .. 80¥

...... g g 0T R T L g e T IR LY
....................... e JGE/BE/EO 0NN HSVEX HIVIH MILINANIINT DTSV NIINIM - 2ISvd

5-106 SECTION FIVE

BENTON HARBOR Basic | 5-107
= g FIEATEIICIT®

APPENDIX D
Entry Points to BASIC Utility Routines

5-108 I SECTION FIVE

B Ceeeseesaea R I B R R DRI EIIPINN B PRI Cereeeeaaaa P R Certteteserasaaaaan B
.................. B I R I I B T TR I T

........... LY A TR RSN G T e
D I cess e et . ﬂﬂmomo.ﬁ NH.&Z Qmmomo.ﬂ Nﬂﬁmomo.—” ..—..H—z

........ . cee EEEIRGS PR PR 140 PR RS 7SR PR PRPSPPA 10,0 SO SRR 4 AT

e e TIESELO | ANSAD v OQEETELO WHNAL e Q800009 1507720

?00°'5/40
......... W EQENEOT IO 902080

.:.:.:.:‘bmbwmwb.:.:................ mﬁbumﬂo
v00°590 0L *¥N3 £95° 050 31 Y3 I9£ 90 ASH) 910590 MS‘MMT

......... e, L OBENY90 NSOUNE L 9EE°Y90 SPMMI | ££07590 95* OEETVR0 AMTMMA
ZIE Y90 A0 NN3 OTE*F90 AN NNI 9¥0°550 " IN*NYTF TOE V90 AT HNE
B oo PEEIVO0 NLSNNI 0 580:590 QI°4N3 952 v90 ITTHY3 £92:90 O ¥M3

e e ETIREA SR S o¢w<¢ao:mu.zzu.:.:.:.:.@wdauod.:.:.xxu.:‘:.:.:.ﬂoq*qu.:.:.qu.:......... .

T¥0°£90 Xnd T50°940 419 ¥L0°0V0 AJ3¢ , 990°0¥0 X3

e e PP PRI TR e sk Ok B ANSST PP e

IS99 MOINMUH NOLN3A JFINILXI

MOd S3ISSIMIIY

(o)
o
~—
1
7 R .
— e et . .
Q
n el e
<<
m
| T el
O
| .
@
<<
=z
[
w
m
606656 ..:....mwm...: 56T A T ESbTEN NS SEEESS
............ i stot o wS N A £~ I UTRLE 3 ¥4m.H..m_.z.::.............w..._n._.._...:..w...H.m.z.:..........m.ﬁ...mmo:.:m...ﬁu_,z.. e
—auou- 1£0°* Eo L1741 £L84 050 XI4I 200*990 vLd
£4T°590 £02°£90 WAN4d092°890 93NJd VL £90 WdAd
.......... T £L0E90° 5207846 otda TLO0YEL0 0% ida
.. TAuoM-. o 0t0dd L EBTNLE0 ancMME ::.mmﬁ.m.no.
30 E.zzu amﬁ.nao A8¥9N3 L1250
R s T8uou- asTuMa LETTL50 3y
...... IN*9Y3 PTT* 250 :H.«zm
=0 30*y¥3 e Q1’250 odrMy3
AXD T1E*090 nXa
........... s s STEQIQVQ.LLADIY L 99000V0 L X0

5-110

SECTION FIVE

PAGE 1

117.220

063.207

117.220 003
117.221 003
117.222 003
117.223 012
117.224 247
117.225 310
117.226 075

117.227 312 233 077

117.232 075
117.233 0o2

117.234 315 207 063

117.237 311

117.240

STATEMENTS = 00016
FREE BYTES - 10331
NO ERRORS DETECTED.

FPNRM
START

USR1

ORG
EQU
INX
INX
INX
LDAX
ANA
RZ
DCR
JZ
DCR
STAX
CALL
RET

END

120000A-160Q
063207A

>t W Ww w

A
USR1
A

B
FPNRM

START

HASL #04.01.00

INC UP
TO
EXPONENT
(A) = ACCX EXP
SET CONDX CODE

/2

IF UNDER FLOW
/2 AGAIN (/4)
RET TO ACCX
NORMALIZE

IN CASE O

g IEATHKITS

BENTON HARBOR BASIC | 5-111

APPENDIX E
An Example of USR

The following program demonstrates BASIC’s USR function. This USR program,
which performs the simple task of dividing the USR argument by four, was
written under TED-8 (see Page 3-37) and assembled by HASL-8 (see Page 4-53).
The object program can be written onto tape and then loaded into H8 memory, it
can be written directly into memory by HASL-8, or because it is short it can be
entered via the H8 keypad. The program works as follows, and is printed out on
Page 5-96.

1.

When the USR function is called, it finds the starting address of the
user-written program at USRFCN. Therefore, the starting address of this
program (117 220) is entered in these locations. See “Appendix D” for the
Address of USRFCN.

The BC register pair point to BASIC’s floating point accumulator (ACCX).
See Page 5-95 for ACCX description.

To divide the number in ACCX by four, the ACCX exponent is shifted left
twice. This is accomplished in the following steps.

The BC pair is incremented three times, after which it points to the ACCX
exponent.

The contents of the ACCX exponent is loaded into the 8080 accumulator.

- The 8080 accumulator is shifted left one, dividing the exponent (and

therefore the number) by two.

After the first left shift, we test for an underflow, which would indicate the
number is out of BASIC’s range.

If there is no under flow, we shift left again to complete the divide by four.

5-112

SECTION FIVE

A FTEATELEKIT®

9. Oncethedivideby fouris complete, the value in the accumulator is placed
back in ACCX exponent.

10. We now call the floating point normalization routine (FPNRM) from
BASIC. This normalizes the number in the ACCX in case the result was
Z€ro.

11. Once normalized, a RET (return) instruction is used to return to BASIC,
ending the USR program.

To run this program, you must reserve room at the top of memory for it, and for
PAM-8’s stack should an RST be executed. For this reason, the program was
started 160 (octal) bytes below the top of memory. BASIC must be configured
with high memory set below 117 220 (location 20304 decimal). NOTE: You will
need at least 12K of memory to use the USR Function.

T .

E= g F I ATEIICITS

BENTON HARBOR BASIC

INDEX

NOTE: Numbers printed in a bold type face refer to
examples of the indicated statement or function.

ASCII Function, 5-69

Absolute Value, 5-61

Addition, 5-14, 5-16

AND, 5-19

Arc Tangent Function, 5-62
Arithmetic, 5-9

Arithmetic, Functions, 5-61 ff,
Arithmetic Operators, 5-14
Arithmetic Priority, 5-14
Arrays, 5-12 ff, 5-21, 5-33, 5-36
Assignment Statement, 5-11, 5-45
Asterisk, 5-7, 5-14

Backspace, changing of, 5-71 (0-20)
BASIC File, 0-15 ff, 5-30

Basic Statements, 5-25

BENTON HARBOR BASIC, 5-7
Blanks (spaces), 5-73

Boolean Values, 5-10

Brackets, 5-26

BUILD, 5-27

Character Function, 5-68
CHR $, 5-68

CNTRL-H, 5-71

CNTRL, 5-34 ff, 5-10, 5-52
CNTRL-Q, 5-72

CNTRL-S, 5-72

Checksum Error, 5-30, 5-32
CLEAR, 5-33, 5-56

. Clear Varname, 5-33

Clock, 5-36
Pause, 5-49
Colon 5-25, 5-37, 5-44
Comma, 5-50 ff,
Command Completion, 5-7, 5-72
Command Mode, 5-23 ff, 5-33
Comments, 5-55
Concatenation, 5-22

"Continue, 5-23, 5-27, 5-60, 5-58, 5-71

Control-B, 5-34
Control-C, 5-71
Abort List, 5-47
Control-O, 5-34, 5-47
Abort List, 5-47
Cosine Function, 5-62
Cube, 5-34

5-113

5-114

SECTION FIVE

| = F T ATETECTTe

DATA, 5-54 ff, 5-56, 5-54
Data Exhausted, 5-77
Data Only Statement,

One Line, 5-55
Decimal Notation, 5-10
DEF FN 5-58
DELETE, 5-28, 5-28
DIM (Dimension), 5-12, 5-13, 5-36
Discard Flag CNTRL-O, 5-72
Discard Flag CNTRL-P, 5-72
Displays Control, 5-35
Divide by Zero, 5-75
Division, 5-14
Dollar Sign ($), 5-21
Double Commas, 5-52 ff,
DUMP, 5-28

END, 5-58

Equal Sign, 5-18, 5-22, 5-46
Errors, 5-75 ff, 5-42

Errors Recover, 5-75
ERROR Table, 5-77
Exponential Format, 5-9
Exponential Function, 5-62
Exponential Notation, 5-9, 5-35
Exponentiation, 5-14 ff,
Expressions, 5-14

Extended B.H. Basic, 5-7

False, 5-18

FOR, 5-24, 5-37, 5-39, 5-39 ff.
FREE EX, 5-41

Free Space Function (FRE), 5-67
Functions, Predefined, 5-61 ff,

GOSUB, 5-34, 5-41, 5-42 ff,
GOTO, 5-44

High Memory, 5-6

iexp, 5-26

IF GOTO, 5-45

IF THEN, 5-18, 5-45
IGNORE, 5-30, 5-32
Immediate Execution, 5-23
Input and Line Input, 5-59
Inputting Control, 5-71
Integer Function, 5-62
Integer Numbers, 5-9

I/O MAP, 0-49

Label File, 0-12 ff,

Left String Function, 5-69
LET, 5-46

Lexical Rules, 5-73

Line Deletion, 5-74

LINE Input, 5-59

Line Insertion, 5-73

Line Length, 5-74

Line Numbers, 5-25

Line Replacement, 5-74
LIST, 5-47, 5-73

LOAD, 5-29

Loading Basic, 5-7
Logarithm Function, 5-62
Loop, 5-39 ff,

Map, I/O, 0-49
Map, MEMORY, 0-50
Maximum Function, 5-67
Memory, 5-6
Poke, 5-49
Map, 0-50

Middle String Function, 5-70

Minimum Function, 5-67
Multiple Statements, 5-24
Multiplication, 5-14 ff,

BENTON HARBOR BAsic | 5-115

- “Name”, 5-26

Negation, 5-14, 5-15
Negotion, 5-14
Nesting Depth, 5-40, 5-44

- Nesting, 5-40 ff

" nexp, 5-26 ff

' NEXT, 5-24, 5-37, 5-39, 5-37 ff

NOT, 5-14, 5-19
Numeric Data, 5-9
Numeric Value Function, 5-70

- NXT, 5-57

ON ... GOSUB, 5-48
ON ... GOTO, 5-48
Operators, 5-14

OR, 5-19

OUT, 5-48 -

Output Port, 5-48
Output Restoration, 5-72
Output Suspension, 5-72

.- Outputting Control, 5-72

PAD Function, 5-63
Parenthesis, 5-15

PAUSE, 5-49

PEEK, 5-63

POKE, 5-49

PORT, 5-50

Position Function, 5-63
Predefined Functions, 5-61 ff,
PRINT, 5-37, 5-38, 5-50 ff
Printing Strings, 5-51
Printing Variables, 5-50
Print Zone, 5-35

Priority, Arithmetic, 5-14 ff,

 Program Loop, 5-37

Program Only Mode, 5-25 ff, 5-33, 5-58
Prompt,

Basic, 5-7, 5-71

Input, 5-59.

Quotes,
Input, 5-59
Line Input, 5-59
Strings, 5-68

Random Function, 5-63

READ, 5-54 ff,

Real Numbers, 5-9

Record, 0-12 ff,

Relational Operators, 5-18, 5-22
REM (Remark), 5-55

RESTORE, 5-56

RETURN, 5-35, 5-42 ff,

Right String Function, 5-69
RND, 5-63

Rubout, changing of, 5-71 (0-20)
RUN, 5-30

SCRATCH, 5-31

Segment Function, 5-65
Semicolon, 5-52 ff,

Sep, 5-26

Sequence Error, 5-29, 5-32
sexp, 5-26 »
SGN 5-66

Sign Function, 5-66

Sine Function, 5-66
Single Statements, 5-24
Single Step Execution, 5-57

" - Space Function, 5-68
. Spaces, see ‘“‘Blanks”, 5-73

Special Feature Functions, 5-61 ff,
SQUARE (Example), 5-24, 5-34, 5-56
Square Root Function, 5-66
Statement Length, 5-25

Statements, 5-24 ff,

Statement Types, 5-25 ‘

Step, FOR/NEXT, 5-37 ff,

STEP, 5-57 |

a0y

¥

SECTION FIVE

L

i

39

P

B

STOP, 560 4

String Buffers, 5-29

String Data, 5-10

String Functions, 5-68
String Operators, 5-22
Strings, 5-21

String Variables, 5-21
Subroutines, 5-42 ff,
Subscripted Variables, 5-12
Subtraction, 5-14, 5-16
SURE, 5-31

TAB Function, 5-68
Tangent Function, 5-67
Tape Error; 5-30

"Text Rules, 5-73

Trailing Blanlgs;f-’fs-24
True, 5-18 -~
Truncation, 5-10

Unary Operafors, 5-14.ff .

USE Error, 5-26

User Defined Function,
Single Line (DEF-FN), 5-56
Machine Language (USR), 5-33, 5-66 -

R
v

VAL 5-70

Var, 5-26 '

Variables, 5-11, 5-33 -
Verify, 5-31

e
.

REAUIRED PATCHFS FOR

.................. P - R R R R R L R R R R R R R

EXTENDED HENTON HAKBDR HASIC .

... Cesesssessssssssssssssssssssscccencncec SN

.......... T R N R N R T O R R R R R R R RN E

st serrrenerereeee BRODUCT "EVERY TINE A 'COAD 1S MADE FROM

106175 101 361 314 047 077 311 072 Cetereaeateeatitereneneeatetariasatentsaes s besannatene s anntnae

PR S TR T O B O OO O DA O DO R R R R R R R R

106205 353 040 346 040 310 303 105 065

598-3-01

™~ Instructions

for the

EXTENDED BENTON HARBOR BASIC
(Version 10.02.00)

Model HC8-13

Table of Contents

INtrOdUCHON .« .ottt e 1

System Data Formatuuuiiiiiiiiiii i 2

New Command Mode Statementscooeriiiiiiinieenneennnn. 4

- EITOr Table . oottt e e 7
W= Optional Patchesot 8
"Basic Utility ROUtinesooiiiiiiiiitiiiiia e, 10

Entry Points To Basic Utility Routineso 20

INTRODUCTION

This Manual describes the new and different functions of the Extended Benton
Harbor BASIC Program (version 10.02.00). It is not meant to replace the H8
Software Reference Manual, only to supplement it. Read through this Manual to
become familiar with the new commands.

It is a good idea to make notes or references to this Manual in your Software
Manual to remind you of the new and different commands contained in version
10.02.00 of BASIC. Keep this Manual with the H8 Software Reference Manual. -

Copyright © 1978
Heath Company HEATH COMPANY

All Rights Reserved
W Printed in the United States of America BENTON HARBOR, MICHIGAN 4902 2 595-2164

AN

e d FIE ATEIEIT®

SYSTEM DATA FORMAT

Extended Benton Harbor BASIC (version 10.02.00) contains the three original
file types (001, 002, and 003) plus three new file types (004, 005, and 006).

001

002

003

004

005

006

Memory Image.

BASIC Programs using Extended Benton Harbor BASIC version
10.01.00.

Compressed Text.

BASIC Programs using Extended Benton Harbor BASIC version
10.02.00.

BASIC Data using Extended Benton Harbor BASIC version
10.02.00.

BASIC Programs and Data using Extended Benton Harbor BASIC
version 10.02.00. :

The three original file types (001, 002, and 003), which are explained in the
“Tape Files” section of the H8 Software Reference Manual, do not change. The
three new file types are explained in the following paragraphs.

BASIC PROGRAMS (Type = 004)

This file type is used by BASIC (version 10.02.00) when you load and dump
programs. It is the same as file type 002 except that it uses a different format to
dump and load the program. This file always has a label record (#0), a table
record (#1) that contains a table describing what data has been stored, and a data
record (#2) containing the actual data (program text).

)

g IEATEHRITS

BASIC DATA (Type = 005)

This file type is the same as file type 004 except that it is used to load and dump
data (program variables).

BASIC PROGRAM AND DATA (Type = 006)

This file type is the same as file type 004 except that it is used to load and dump
both the program text and program variables together.

READING THE DISPLAYS

When the H8 computer is reading or writing data on a tape transport, the front
panel displays are continually displaying data about the tape operation. The
information contained in the “Reading The Displays” section of the H8 Software
Reference Manual explains how to read the displays. However, the data-type
LED (the one on the right) displays the type of data being read or written. This
information is displayed as:

DISPLAY ' DATA/TYPE
1 Memory Image
2 BASIC Program Text (version 10.01.00)
3 Compressed Text
4 BASIC Program Text (version 10.02.00)
5 BASIC Program Variables (version 10.02.00)
6 BASIC Program Text and Program Variables

(version 10.02.00)

= EATERKITS

NEW COMMAND MODE STATEMENTS

The command mode statements in this version (10.02.00) of BASIC either re-
place or supplement those listed in the H8 Software Reference Manual. Refer to
the statements in this Manual when you run version 10.02.00 of Extended
Benton Harbor BASIC. v

DUMP

The DUMP statement is the same as the dump statement for Extended Benton

‘Harbor BASIC version 10.01.00 except that it produces a file type 4. A program

dumped using the DUMP statement can only be loaded using the LOAD state-
ment.

LOAD

The LOAD statement is the same as the load statement for Extended Benton
Harbor BASIC version 10.01.00 except that the variables in memory are not
destroyed when the program (file type 4) is loaded. However, the variables will
be cleared to zero if you use the RUN command to execute the program after it is
loaded. Therefore, use the CONTINUE statement when you want to run the
program without destroying the variables. The LOAD command enters the
LOCK mode after it has loaded the program text.

OLDLOAD

The OLDLOAD statement lets you load programs (file type 2) that were dumped
using the old version (10.01.00) of Extended Benton Harbor BASIC. The OLD-
LOAD statement, unlike the new LOAD statement, destroys the program vari-
ables currently in memory. The form of the OLDLOAD statement is:

*OLDLOAD ‘“‘name” @
PUT

The PUT statement is a form of dump statement, in that it saves the program
variables on tape (file type 5). It does not save the program, only the variables.
The “name” that you give to the variables is written on the tape so you can reload
the variables in the future using the specified name. The form of the PUT
statement is:

*PUT “name” @

= gsmATHEITS

The string “name’” may consist of up to 80 ASCII characters. Any normal ASCII
character string is permitted. Make sure the tape drive is ready before you enter
the PUT statement. BASIC starts the drive, writes the data, and stops the drive.
You can use CONTROL-C to abort the PUT routine; however, the file will not be

complete. A program dumped using the PUT statement can only be loaded using
the GET statement.

GET

The GET statement loads variables (file type 5), previously stored on tape, into
memory. The current variables in memory are destroyed, but the program text is
not affected. Since the variables are stored in mass storage under a specified
name, you can load them from storage using their specified name. The form of
the GET statement is:

*GET “name” €8

SURE?

A Y reply tothe question “SURE?”’ causes BASIC to scan the mass storage device
until it finds a variable (file type 5) whose name matches the specified string
“name.” It then destroys current variables in memory and loads the new vari-
ables. Any other response cancels the GET routine. If the name in mass storage
device is longer than the specified name you enter, a match on the supplied
characters in the string “‘name” is valid. Thus, a program may be dumped (PUT)
with extra information entered in the name (such as program version number).
This lets you load a program without entering the extra information. The GET
command enters the LOCK mode after it has loaded the program variables.

FDUMP

The FDUMP statement is a combination of the DUMP and PUT statements in that
it dumps both the program text and the variables (file type 6). The “‘name’’ that
you give to the program is written on the tape so that you can reload the program
and variables in the future using the specified name. The form of the FDUMP
statement is:

*FDUMP ‘““name” €

The string ““name” may consist of up to 80 ASCII characters. Any normal ASCII
character string is permitted. Make sure the tape drive is ready before you enter
the FDUMP statement. BASIC starts the drive, writes the data, and stops the
drive. You can use the CONTROL-C to abort the FDUMP routine; however, the

file will be incomplete. A program dumped using the FDUMP statement can
only be loaded using the FLOAD statement.

(g

FLOAD

The FLOAD statement is a combination of the LOAD and GET statements in that
it loads both the program and its variables (file type 6) at the same time. Since the
program and its variables are stored in mass storage under a specified name, you
can load them from storage using the specified name. The form of the FLOAD

statement is:
*FLOAD ‘““name” €9

SURE?

A Y reply tothe ques.ion “SURE?” causes BASIC to scan the mass storage device
until it finds a prosram (file type 6) whose name matches the specified string
“name.” It then destroys the current program in memory and loads the new
program text and program variables. Any other response cancels the FLOAD
routine. If the name in the mass storage device is longer than the specified name
you enter, a match on the supplied characters in the string “name” is valid. Thus,
a program may be dumped (FDUMPed) with extra information entered in the
name (such as program version). This lets you load a program without entering
the extra information. The FLOAD command enters the LOCK mode after it has
loaded the program text and the program variables.

LOCK

The LOCK statement protects your program by preventing the execution of the
following command mode statements:

BUILD SCRATCH
DELETE CLEAR
LOAD GET

RUN | FLOAD

U

<

I—IE.A.TI—IKIT®

It also prevents the entry or deletion of program text. Variables can be changed,
but not deleted. The form of the LOCK statement is:

*LOCK @

A lock error (LOCK) is generated if you attempt to enter a “locked out”’ command

mode statement, such as RUN. Use the UNLOCK statement to abort the LOCK
mode.

UNLOCK

The UNLOCK statement aborts the LOCK mode and restores the use of all
command mode statements. The form of the UNLOCK statement is:

*UNLOCK @

ERROR TABLE

The following new error listing is in addition to those errors given in the “BASIC
Error Table” in the H8 Software Reference Manual. '

BASIC EXTENDED COMMENTS
BASIC (Cause of Error)

— LOCK Data LOCK engaged. Attempting to change data
: using the RUN, CLEAR, SCRATCH, BUILD,
LOAD, DELETE, GET, or FLOAD commands. Or,
attempting to add or delete lines of BASIC text.

=

OPTIONAL PATCHES

An optional patch is supplied with Extended Benton Harbor BASIC version
10.02.00. This option is for systems that use a terminal device that requires two
stop bits (such as the Teletype Model ASR 33). Refer to the “Installing A Patch”
section of the H8 Software Reference Manual if you need to use either of these
optional patches.

........ e e

...................... R R R R R R R ERERRERER ' Rt -2 & 3§ &
91g 0101n0

.. R |11 X U L

.. e P g G FNOTATTNDT L TM T NAY NG
HIIHM S3JIA3C ¥04 UISN 38 LON GTNOHS SIHL °S118 dO1S 2 INININO3Y
Tt CIVRTWHIY Y TISN RDIAM SWTLSAS H0 ATFLHISNI ST CHILVE STHL T EISNT

;
!
:
;
i
;

.......................... “Xx°20°01
..... g e e R N Y AN TR

10

=@ EATHEITS

BASIC UTILITY ROUTINES

The following pages contain a description of several utility routines included in
Extended Benton Harbor BASIC version 10.02.00. You can use them with user-
written machine language routines called by the USR function. Refer to the
section “Entry Points to BASIC Utility Routines” in this Manual.

11

ettt J R R R R R R L J T R R L

sa AJJv nol nL0O°0NO
womcﬂNHOQO.ao

R eI I i
....................u......>._...>qU4.... ey

..‘................:...‘........:.....‘......... J sa x33v NCﬁ OCC.OQO
...... g G e g

Ho

e G K ST 1YY AHOW IS G JRVEED) POLERERREREE

e R LT S (LS Y SRR Y 1

o R R T oYY m
e *HIIW ‘¥0U¥VH NOLIN3H f
B aEAT e

4

..... e R e e Y ALV I SLEV/ VG THETHAATD

e e R AT e
e P o tAS ML CN2O6 Sl e
e (NOTTVHOSN0T ¥NTINTMY 9L61/760 THITHAGDD ke T

T IW CH0aHVH NOIN
b

......... :.:.:. TANVdWU IH M0 ‘BL/N0 TS TR TH X

v

..... e SANYdWO) HAVEH M0 CHELD LT ey
T g UNL f3LLIAY AV UUUTUUTNTS, SO, £ O TR
O SNOTTVHOJE0I ¥H3l < R e

e e ier gz BB U O PP
U o S¥ITIHGETINT ITISve ¥NTUNI 5I6ve FEPE Y

g . . 000°000

B e B XA R s
g TS AR ST G TTE T

. 218ve. .

onnz<sum-:“-“n— .
............ L4/08/01. 273N WSYBH HAVIH c¥IL3UdUILNT JISYE MLV

2

12|

B
Ceeeean Ceeranae Ceeeeeas ettt ettt ettt ettt ettt ittt

................... TR SN IVINGS (63903
ORI e e R T XJuE 2 Q8 AwIN3 R

INILNOY NILLIymM=¥3SN v O 601

|13

........ ma::%auaqagz
SN e G LN G3NT3ON g+ Qg+~ e eereeroroe s
.......... g R YT+ 102" 37 iy B oooroe
.......... e TSR O 4 3 iy~ S v oeeeeeeonennonen s
RS 3 LTRSS ey g ey -+ S

feee s geeneeee e B T C g tereeaeasaan

BN PPN e NN T TAY ey RN U O WEY LT Luavons
691

ONISSTW 37dVTEVA IX3IN ¥ Nod AN H8T WS ’ seetada

39vsn voIl * N3 NI°y43

H3QWAN V93T ¥ O3 T NT*HA3

0/ ¥ HERGI RS E IR

A31SNVHX3 viva * nn3 30°843

GogoRINGY RERERER a3 G NaY

J=T0¥1INOD x N3 3J3°y4y3

........ .u.u.q.n............t.\.o.N.\.c.u‘..m...—>.2.m<.m....::._,<w.::.:.:.......:.:............:...:...::U......‘.‘.‘...............m.m.hwan.z.u__.zu..u._.m.nm..:k«MI..J..u~M<m..

D

14

- ¥ no3 X141 nee . weelese

e T T g g
222

e A, et eeeeieeeeeeiaeeeaea e e A TR N TG O T g g e e e
SESS93>N=>0 40 Lyvd TVAa93IINI = (30) 1IXx3 022

ST T g SR Y TR UHAY T RMLND T R G B e e
812

e R G TN Y) TR N LT LY

912
CHIITANT OINI FOWAN 1TAdS = X141 e Y3

K KKK

x x

.............. e e LR3I BT e

AL
|8 %4

37y §38n ¥0T2
e U3TMOD L LIXT 602
SSERTGY LauvT o LA o PP P PPy
D PP

YRS i pE e mammaee
........ b0
902 e,
T e e e 30atdY s3asn . ¥ 86l T
Ay 3 el TR
............ e e il .. 3NON AWAND w961
' ¥ Sel o
............ i LA23V) 04 (XD2W) AdOD U . B {1 SO
. s ST RITYTRRRS T T TpT
e, TS PP URUR PR TR U TR O 11 SO
061
T TP il TR UTURRR 429, 83s0. ... % 681 U R ORI
a31d0d 1IXx3 * wHl
TP . 307VA 40, SS3NAUY. = (30D AN w48V TR TR
¥ 9g |
UTTUER TR SUOLVINWAIIY . X 3HL OANL 3NIVA 3LAE n V. SITd0I XAD ... SLEOSSL e, TR
*» nel -
TR TP RR SHOLVINWNAIV X, OANL ANIVA AdOD .= XAD. %% €81 . . TR .

gL=NVP=ST Ln:2isgl SanILnuy¥ans ALINILN
........ FONd. ... LLL02/0). . 2N WSNBH RV M. e TH 3L 38IEIINT DTSV HIVIH - JISVE

|15

... e I g Q@ Tt e e St

:.:.:...,............................. INON TN g :.:............

.......................... D I I I hznou = ﬂucv * ﬁcm
PR " LIS RYINT g e .

................. D T R I ¥ omN
P «NOWIH 40 ATITY Y EOT2 N2 Egeg e RO :

......................... R LI I ¥ hwm
.............. e g R gt et e

D I R A D IR I I I LI TR D ¥ :Qu >U* :mN sosiees

. PP SERRTIRS AUUPPRILLLE SOUUPRI.CL e e e T T s

................ R I T R TR I I I) R I I . Nmm
. g G g R

INUN 11x3 2
INON T AEING ¥ eh2
F'S

................. R L AR R R
PP O TR R P URRS. AUTRURLLL = SORRRRI 32 SO0 L

£h2

..Z.:.I................ Z.:‘:.......... O . T G Y T R T B
Q3dAl 11x3 *» In2

438WNN = (30) AYLINT

*¥3934NI YWIDAG 3dAL - 101 *x Gg2

» no3 1741 ¢¢2 wo=le=

¥
CELL0) L ARIND R B2
* l22

e B, B U SHARAON L0 AL 9220 e

E
:
;
¢
i
;

s g e
e 3OV e LA /ORA0T L RIIA HSYBH . HLN I e THILIUGUIINT, JISVH HLIVIH = JISVE

HEATEKIT®

16

B S

J

e e RO OYR GO GO

LLY 002 000 000

e B, Y PRy Lot By SO PR PP PRTIPPPPPRRRS

SLT 9nT 9nl 9nl

.......... g R e

n02 021 000 000

e R e GGG GG e

002 001 000 000

e B, FRETR ey S 00T 600 000

' SAVMIY QINOHS §d38wWIN INIOd ONTIVOTd LvHi 3108 “iT8 Viva ¥
e . ANYDOTJINIIS LSOW 3HL ST (0001) 119 Lx3N 3WL ‘116 NIIS 3HI SI 114 *

¥3040 HOIH FWL NOILVION INIW3ITIW0D 'SVOML NI a330LS Iuv ¥
....... e, SYABWAN JHL TSLIE B2 40 VLI0L v ¥04 ‘S3ILAY £ SAdNII0 VSSIINVW 3HL *

.............. T eI I VHTFSS PP IPRpeey poss
........... e 3AAB YSSTINYW INYVITJINGLS 1SOw en
31A9 VSSIINVW INVIIJINDTS — dIw T+N ¥
............ e 3LAE VSSTINYN INVITHINGLS 1SV3ED 04N *
........ i ¥
...................... v, ABUNIS 03SVIE ALAA2ANG Y ANV CVSSIINYW AINIWIdW0] S.0ML *
3LA8 € vV JO SLISISNOD ¥36WNN 3IHL “3INTVA 3iA€=n v A8
..... e G3ANISIUAIY YV, SHIHWAN ANIOd ONILYOIA NOISIIING=ININIS
*
...................... e VAH¥04 ANIOd ONLLIVOD4 8H X

3HL SI 118 viva INVIIJINIIS L1SOW 3HL 1VHL OS

0= dU LNJINOJIXI NV ‘0002 SV 03¥IINI SI 0 d4U IN3INOIX3 NV SNHL

TR WSRO

$S37dnwyx3

¥
‘VIVQA G3ZITVwaON »

=NON NO '31VHIJ0 1ON T11% G3ITI4dNS SINI1A0Y INTOd ONITvD VY 3Hi

SINAVA SVITE NATS IHI 40

S0 . SAWYMIY SI (VSSIINVW ONY) ININOIX3 SiI 23SVI vII3IdS

vV SY Q3LV3Y¥L SI 0¥3Z ¥IBWNN 3IHL 13 “0991

Ql.. :.h>.:whmx.zp<ui.:.: e R .

‘Q3ZIVWHON 39

g e

S°0=- * b61¢
..... L% CUCERRLERTEIVELEX O SEETRERRR

1°0 Lig
g g

0°01 Slg
e

£l
ey

1941
T
«oom
«.
#

C

;o
N O
4 ‘
* K& #x t:l

gpe
Log

«
.:.:.:.:.:....... u
311804d0 *

*

K &

® &

Sv Q340)

* &

® ®

X &

® ¥

. ® x:

® %

lvd4H = JIsSve

7

e, e e AR GG LG T A aa
99¢

e e G T
. v s3sn * n9§

e e ORIV E (XTI ARG e
3INON AMLN3 ¥ 29¢

e PP, e e e p g e e
- *XJJv 40 SINIINUD JHL SILVIIN 9INdDS ¥ 09¢
e e T g e e

*31v93N INIUd ONTLVDd = 93Nd4 ¥ 8S¢

SS¢
T R T PPy PR PP PP PR PPEEPPREPPRRPIRT
4‘v s3sn ¥ §S¢
:.:cu~4a<zxoz:~xuu<u:.:.H-xu.:.:.:.f..Mmﬂ.:.:.:.:.:.:.:.:.:.:‘:.:.:.
INON AHLN] L I 11

..h.............................‘...Aumﬁ......................................:

¥
*(XJJv) 40 SINIINOD 3IHL S3IZITVWHON WYNJJ * bhe

*3ZITVWHON INIOd ONILVOTd = WiNdd *» Ing

L e g s Lo

¥ COEEP)
ohe

............‘...n.................................dﬂ@ﬂw..

seesesses s . . co . ess s s st uid WU“: ¥ N:M
e . e e, e NVHIRTT T FATIN QT LA g e
1INS3¥ = XIIV 11x3 » 0ng
.:u:JQ..xwzwﬂ>a.¢ O UIINTGE & 1FA) ANIND e
v % B8f¢
ﬁ:.:.:.:.:.:.:.:.:.:.:.:.:.:.xuuwzh:auav:nuhammau:a Qg7 T g
% 9¢¢
..:.Hummwaan.ﬁzuo.:u PLEVOAT & GG R TG

B R R I I I S R R I I I I R R R R I R R R R R R R R I

% no3 a0vdd §%¢

L e S SRR L R TR

4%y
G39NVHINA INTVA _d311ddNS ¥ 62§

R AR SN ol SR
3INTIVA_d4 3148 p 0L H3IINIO

¢

« &

S R R R

x &

9.4

R R R R I R R I R R R R R R R R YRR TR

*aQy LNIQd 9N

PR N R R R P P R T

) J

18]

D))

J.I-us
FHGAE XDV
R R I R R D I I I I A A I I T I I IR R AR S CIIY QUhcon: ﬂl-r

AR & & F AR To R L F T LA

D R R I R

NN T=47 31NN

INIVA_ ANIOd ONILVON4 v OLNI 9NINIS IIJSV NV Si1¥

TP PRIk £ 5 LN E T 8§

8L=NVIM=ST Lpi2iigl
e AW AEZ0R400. 20 FA NSYSH, HAYIH

A/XD

¥

v
yo
)
yo

e

>

Jv =

h non

s3sn * 20N

..... B R R PR R R

L+ P PP P LTI LT TP PPPPPPPRTS

P

® %

oon

WING e e

66¢%
L1:3%

Lé6%
96¢%

S6%
hég

t6%

* KK KK XK K

XJIv

°*30IAI0 INIOd 9NILIVOYd = AIQd3 ¥» Wlg

X33
A_40 $S340Q

“ANdILNW INIOdD INTLIVOTD

HL=NVl=Sl [/ni2ligl
39vd LL/02/70% 2°TA WSVBH HLIVIH

4. =1

INWd4 9.¢

Nwdd ¥ 69¢%

WEIRETLENET

*SIMiTANN INTOd INT1IvoNS
JISu HIVIH « JI[SVEH

e

|19

..., J3Y4 S3LAE 8LTEN
1331307 °Sy08%3 0
SININILVIS hhh

3131dw03 A THWISSY
UN3 hhn ceenane

i

hn

00
#/1d 0002‘OnNN1‘ULO

‘09S¢ aa woma inn nnl L02 9S%

R R T T I - L R R R R R R R T I S S R R L R L R LR R R

onnw
i v 002

n/1d= c°°~.emmw<.agw<e~mo HOTTRATAN 68T g8 041 220

Id= v202‘0gg200L1°8220 Ha IdN L§h £22 0L1

9en

g s s T BB G TN SR

d= D02 2UEE2 00,1020 #d 2TdN "qgn

2/1d= 0102‘0gg2°00L1/0220 ga 2°1dN g5h g£¢2 0Ll 220

R R R et DL AR C PP PP PP PPPPR I SRR 1= SRR LS L

000

0202070 HG 0049 g T 000 000 600
0sn

B R R R T T T TR T e R R R L L T R

noe
uro2‘vo2i‘o‘o Hd °01dd 62nh 021 000 000 =e=‘ece=

B R R R R R R R T I LR R R R R gy B PO R R R R R LR

gen

g G G B DO 0007 008 sRavama
e ettt eeeeeeee ettt ee ettt oot e ek s et AAEA e o e e e e e e e e e e e e e e e e e e e s e e ez e e T L U
SILAE 0ILVHINGS (8T 9 NO qen :

nen

*» ln
°S3INVA INIOd INILVONS ¥ 22N

T B U L R R - I A R SO L S A T R R

g g .
39vd LL/02/701 2°IA WSVEBH HIV3IH *¥3134d

8 HiV3H

¥ no3 vid 6ln meetee-
P P PP DT LR P P e P PP PR PRR I (R PP R P TPV PPL PR PPEPTRRRRER [
: Lin
..:.:.:.:.:.:.:.:.:.:,:.u.qw~¢:.:.Wuw:.:.:..:w:uq-:.:................. ..1.:.:.:.:.:.:

~
.,... u;m_.w<._.._cmmw~BC¢uaue :m;
.......:........:.::........::::............a.ue.auuo:uz.uw.b.»..mo..r.».ozm_.d..u..zv:.:.H;u..:...... cv?........:
»xu»wuohmobwmwmccquaaxv «mﬁa
S S TR R A U) AN T e g

sesseses . | * ﬂﬁ:
L e e R e g e DS CREEL LR LR R LR RELRTRREERERE
..:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.m_mMm.z«:o*aw:qm@maz.$z*w@:@z~+moua:«.m*mw>¢m@.a_m.;.:.:.w..mwm.:.:.:.:.:.:.:.. U

*x gOnm .
*I1JSV 01 9NIAVOd - vid *¥» LOn

20| , «

ENTRY POINTS TO BASIC UTILITY ROUTINES

ANDDRESSES FOR

.............. [A T et o S A R R R R R R R R R R R R R R R R

ACCX 040066 ACCY 040074 ATF 101070 TS SR TS £ X A
QXML 0.70Q23.............. cXY........ 070007............... ERR,CH 065115 FRELCC 065105
ERR.DO 065136 ERR.DE 065125 ERR,IC 065333 FRR.THW 068103 e
LERRGIV... 065454 ERR LK 065157 ERR.ND 065324 . . FRR . MY OnS A6
ERR,OV 06517S ERR,RE 065206 ERR,SC 065311 FRir _ SIL 06R214

ERR,SN... 065226 ERR.SR, . 065274 ERR.SY 065237 FoR,TC 065245

ERR.TO 065262 ERR. TP 065355 ERR,UD 0653U6 Fiola . Il)hlig
CFPQLL.. 006430 ..U FRLG0 106820 FP10,,...006125 FEADD 076125

FPDIV 100025 FPMUL 077070 FPNEG 077047 EE i it ¥ SRR LR RN R L RRELE
LFPSUB . 076333 FTA 101355 JFIX 070340 ... TFLT n70376

NP1 106151 NPI.2 106141 NPT 4 106155 L) FRRR RIS L R
Plod 106161 01 074046 USRFCN 106106 XCY 074341

..
..
...

..
..

T R S B i - A R R LR R RN

Updrading 05.01.,00.
To 05,01.01.

..

..

.............................. BROGIEE EUEKY YL 5. LOBM L& MEHE BRI e
.. THELCONETBURATIONL TAE 111"+ 17Tes
...... NOTES NG, " *# s s s s L
...... S NG " " 7 T e
(o E LT T X PSS PP
...... Saiee 135 oya » .

07 308 b7 e
....... DT BT " O& L e

..

...

..

...

S R LR R R R R

Page 3 of 4

